電気化学検出に基づく FIA

1. はじめに

FIAとは、よく知られた通り、流れを利用し、連続 的にサンプルを測定する実用的な手法である。分析 化学では選択的にかつ高感度な測定が求められてお り、FIAでもこの原則に基づいて様々な前処理法や 選択的検出法が開発されている。前処理や選択的検 出は測定対象に適応した様々な手法が存在するが, 最終的に結果を信号として取り出す際には、大別し て光(吸光度, 蛍光, 化学発光等の変化)と電気(酸 化還元電流,電位,電気伝導度等の変化)応答に基 づいているであろう。光検出では光源と光電子増倍 管などの光検出器が用いられ、電気化学的検出では 電極と電流計,電圧計や電気伝導度計が用いられる。 FIAでは、その簡便さから、光検出が好まれる傾向 にあると感じているが,筆者としては電気分析化学 を主に研究してきた身であり、電気化学的検出に興 味があるので、今回は、最近発表されたFIAに関す る論文の中で,電気化学検出(特に電位や電流変化) を用いた興味深い研究に焦点を当てたい。

2. 電気化学的検出の原理

電気化学的検出では、まず、検出する物質のピー ク電位をサイクリックボルタンメトリーなどによっ て測定し、それをいくらか超えた電位をFIA検出に 用いる電極に印加する必要がある(図1)。こうする ことによって、検出電極に到達した測定物質は速や かに酸化(あるいは還元)されて、電流応答を示す。 水溶液を用いる場合、バックグラウンド電流が流れ にくい(分極窓が広い)グラッシーカーボン(GC) 電極や、表面をチオール等で修飾しやすい金電極が しばしば用いられる。ボロンをドープしたダイヤモ

図 1.サイクリックボルタモグラム(酸化波) の模式図。低電位側:可逆系,高電位側:非 可逆系。水溶液系では非可逆なサイクリック ボルタモグラムに出会う頻度が高い。

九州大学大学院工学研究院 石松 亮一

ンド(BDD) 電極もバックグラウンド電流が流れに くい特性があり、散見される。これらの電極はその まま用いる場合と(前処理等で分離して検出)、表 面を被覆して(選択性を持たせる)使用される場合 がある。2電極式の場合,酸化還元電流が流れるとと もに電圧降下(IRドロップ)が起こり、余分な電圧 の印加が必要となるので、電極電位を制御したい場 合は3電極式が用いられる。3電極式では、作用極と 対極の間に電流を流し,参照極に対する電位を作用 極に印加するので,電圧降下の影響をかなり防げる。 対極は安定な金属である白金が望ましいが、測定を 妨害しなければステンレス等でも代用可能である。 参照極は、塩化銀で被覆された銀線(Ag|AgCl)を KCI水溶液に浸漬した一体型電極が安定な電位を与 えるためよく用いられる。測定溶液に塩化物イオン が存在すれば, 銀塩化銀線だけでも安定な電位が得 られる。

3. 非被覆電極を用いたFIA

Mikaらは去痰 薬の一種である Bromhexine (図2 上)の電流応答 に基づいたFIA 検出を行ってい る。彼らは錠剤 中のBromhexine の濃度定量法の 確立を目的とし ている。GCペー スト電極を用い,

pH=9の条件下で,0.8 V vs Ag|AgCl (3 M KCl)の電位 を印加すると、この物質の酸化電流が観察される。 バッチ系で,2.0 μM,フロー系で0.31 μMの検出限界 を得ている[1]。この系では電極に選択性を持たせて いないので,0.8 V付近で酸化される物質が混入して いると、目的物の濃度を実際より高く見積もってし まう。

Guedesらは高血圧や前立腺肥大症の治療に用いら れる交感神経遮断薬の1種であるPrazosin(図2下)の FIA定量を,BDD電極を使って行っている。この物 質はpH=4で,1.0V付近から酸化電流が,-0.5V付 近から還元電流が観察される(共に,vs Ag|AgCl (飽和KCl))。生体サンプルへの応用を目的とし ているのであろう。尿酸とアスコルビン酸の共存下 での定量を行っている。この時,目的物質の還元電 流も観察されることに着目し,まず,正電位に電位 をステップさせ,尿酸とアスコルビン酸を反応(消 費)させ,その後,負電位にステップすることによ って,Prazosinのみの電流応答を得ることに成功して いる。この方法では,尿酸やアスコルビン酸が100 倍の濃度で存在しても,Prazosinの電流応答は3%程 度しか変化しない。定量限界は0.5 μMであった[2]。

Walpenらは, 多種のフミン酸 等の抗酸化力を FIA法で明らか にしている。GC 電極を用い, 2,2'-azino-bis(3ethylbenzothiazo line-6-sulfonic

acid)のラジカルカチオン(ABTS^{・+})をメディエー ターとして用いている。ABTS⁺⁺はフェノール基を持 つ物質と反応し,自身はABTSに還元される(図3)。 この還元されたABTSを電極で酸化し,その時の電 流からフミン酸等の抗酸化力を間接的に見積もって いる。ABTSは開放電圧で速やかに酸化されるので, この論文では印加電圧の制御は行っていない[3]。

4. 表面被覆電極を用いたFIA

電極表面への被覆は,選択性や触媒作用を持たせ るために行われる。ここでは単純なものから,比較 的複雑な修飾の順番に紹介したい。もちろん複雑で あればいいというわけではない。個人的には,理解 しやすさの点から,単純な構造を好んでいる。

Channonらは、BDD電極の上に白金ナノ粒子を修飾 し、薬物中の不純物であるヒドラジン(N_2H_4)の定

量を試みている。 ヒドラジンは電気 化学的に酸化され にくいが,白金ナ ノ粒子が存在する と,比較的低電位 で酸化される。こ の電位(0.1 V vs Ag|AgCl in 0.2 M PBS)では,薬物中

に多量に存在する

図 4. Ni(II) tetrasulfophthalocyanine の構造。

であろうアセトアミノフェンは酸化されず,ヒドラ ジンのみの電流を検出できる。定量限界は64.5 nMで あった[4]。

ShaidarovaらはGC電極上にNickel(II)

polytetrasulfophthalocyanine (図4)の膜を形成し,通 常,電気化学的に酸化が困難なシスチン,メチオニ ン,システインの検出を行っている。ここでは,電 圧を印加すると,ポリフタロシアニン膜中のNi(II) がNi(III)へ酸化される。この時,近傍にRS⁻が存在す ると(塩基性条件下),中心金属のNi(III)はRS⁻によ って還元され,Ni(II)となるが,すぐに電極反応を経 てNi(III)と酸化される。これによって,電流値の増 幅が起こり,FIAではnMレベルの定量が可能である。 RSHからRS⁻へ解離するpHはアミノ酸によって異な り,pHを調整することによって,この3種類のアミ ノ酸の選択的検出が可能である[5]。

Ogonczykらは、酸化インジウムスズ(ITO)上にア ミノプロピルトリエトキシシランを修飾し、スルホ 基を表面に有するカーボンナノ粒子のFIA検出を行 っている。近年、ナノ粒子が多くの分野に展開され ており、ナノ粒子の検出法の開発は意義があるよう に思われる。この検出原理は、ITO表面の正に帯電 したアミノ基に、負に帯電したカーボンナノ粒子が 吸着すると、アスコルビン酸の酸化を促進するので、 アスコルビン酸の酸化電流をモニタリングすること によって、結果としてカーボンナノ粒子が検出でき るというものである。平均粒子径が13 nmであるカー ボンナノ粒子の1 µg/mLまでの定量が可能であると いう[6]。

Kitikulらは, グルタミン酸 選択性電極を 作製し,FIA定 量を行ってい る。選行ってい る。選進はやや 複雑に、GC電 極上に金ナノ チューブ,チュ ーブ,チュ クルコースオ

図 5. Kitikul らが用いたグルタミン 選択性電極の模式図。

キシダーゼが存在する。金ナノチューブはおそらく, GC電極とのバインダーの役割と,表面積の増大に用 いられていると考えられる。カーボンナノチューブ を用いると,酵素活性が低下しにくくなるという報 告もあるとのことである。キトサンは酵素を修飾す る際の足場である。この電極を用いると,pH=7.4 の条件下で,0.7 V vs Ag|AgCl (in 0.1 M PBS) 付近 から,酵素によって触媒されたグルタミン酸の酸化 に伴う電流が観察され始める。FIAでの検出限界は 1.2 μMであった[7]。

Martosらは金電極上にチオールを介してドーパミンに特異的に結合するRNAアプタマーを修飾し,血清中のドーパミンの定量を行っている。金電極表面はアミノ基を末端に持つチオールでも被覆されている。溶液のpHを調整することによって,電極表面のアミノ基は正に帯電し,ドーパミンや血清中に含まれるであろう夾雑物(カテコールアミン類)のアミノ基も正に帯電するので,静電反発によって,RNAアプタマーに捕捉されにくくなっている。これによってドーパミンに対する選択性をさらに向上させている。この電極では,pH=7.4の条件下で,0.1 V vs Ag|AgCl (0.1 M KCl)付近から酸化電流の増加が観察され,FIAではドーパミンの検出限界は62 nM であった[8]。

Huiらは,金ナノワイヤー上にグルタルアルデヒド, ウシ血清アルブミン,グルコースオキシダーゼ

(GOx),西洋わさびペルオキシダーゼ(HRP)を 修飾した電極を用いて,高いサンプル処理能力を持 つグルコース検出法を報告している。酵素を使うこ とによって,グルコースの酸化に必要な印加電圧を 低下させることができる。GOxとHRPを同時に修飾 することによって,夾雑物による妨害を低減してい る。バッチ系で明瞭な酸化電流は観測されなかった ものの,0.1 V vs Ag|AgCl(3M KCl)付近で電流 応答が最大になっている。グルコースの濃度範囲が5 ~1000 µMにおいて電流応答が線形に変化している。 酵素を用いているので,尿酸には応答しないことが 示されている[9]。

5. その他の電気化学に基づくフロー系

非被覆電極はサンプル中に妨害物質が無いとわか っている場合や、検出電極に到達する前に分離する 前処理を施して用いられる場合が多く、被覆電極で は、電極それ自身に選択性を持たせるので、サンプ ルをそのまま測定できる場合が多い。選択性は、抗 体、酵素、アプタマーなどの特異的な相互作用を利 用し、選択性を高める場合と、触媒活性によって印 加電圧を低減し、妨害物質の酸化を防ぎ、結果とし て選択的な応答を得る場合がある。

最後に、ここまで紹介してきたアプローチとはや や異なる応用について紹介したい。

Sansukらはカーボンナノチューブを絶縁膜上に展開し、FIAの電極として用いている。この時、カーボンナノチューブは絶縁膜上に非常にまばらに存在

し、カーボンナノチューブのネットワークを形成し ているので、電気伝導は確保されているが、電極の 表面積が極端に減少する事になる(図6左)。つまり 充電電流を極端に低減することができる。しかしな がら、反応電流は、充分な電圧を印加すると、カー ボンナノチューブ上で展開する各拡散層がオーバー ラップすることによって、影響を受けない(図6右)。 FIA法でも、充電電流はベース電流の増加につなが ることがあり、検出限界の向上を妨げる要因の一つ である。彼らは、選択性はないものの、ドーパミン の検出限界が50 pMまで向上したことを報告してい る[10]。

図 6. カーボンナノチューブ電極(左)と拡散層の広が りの模式図(右)。

Blasovらは、ポリイオン選択性電極を用いて、薬 剤であるプロタミンとヘパリンのFIA検出を行って いる。ヘパリンは抗凝固薬であり、プロタミンはヘ パリンを阻害する。これらは近紫外一可視光領域で 光吸収が無く、また酸化還元もされにくい物質であ るので、吸光度や酸化還元電流に基づく検出は困難 である。彼らは、この2種類のポリイオンに対するイ オノフォアを用いたイオン選択性電極を作製し、 FIA検出を行っている。この場合、ネルンスト式に 従って、濃度差に応じた電位差が発生するので、電 位変化をモニターしている。共に、数十µg/mL程度 の定量が可能であった[11]。

Liらは炭素電極上にアントラキノンを固定化し、フ ロー系で過酸化水素製造電極として用いている。ま ず、電極表面のアントラキノンが還元されると、ジ イオールが生成

図 7. ヒドロキノン被覆電極を用 いた過酸化水素の生成の模式図。

質が含まれているため、この除去が必要である[12]。

おわりに

本稿では、電気化学検出に基づくFIAに関するい くつかの最近の研究を紹介してきた。電気化学測定 では、ラベリングが不要な場合が多く、実験の手間 が少ないものの、光分析と比べて、やや熟練を要す るように思う。また、電極に選択性を持たせるため には、電極表面を修飾する必要があり、煩雑である ので、FIAの検出器をしてはやや敬遠されがちであ る。しかしながら、光検出は困難だが、電気化学応 答は比較的得やすいといった物質は数多く存在する ので、筆者としても、目的にあった検出系を選択し、 さらに、FIAにしかできない系を開発することによ って流れ分析に貢献していきたい。

参考文献

- J. Mika, J. C. Moreira, A. Nemeckova, J. Zima, J. Barek, H. Dejmkova, *Monatsh. Chem.*, 2015, 146, 1211.
- [2] T. J. Guedes, M. F. Alecrim, F. M. Oliveria, A. B. Lima, S. L. Barbosa, T. P. Santos, J. Solid State Electrochem., 2016, 20, 2445.
- [3] N. Walpen, M. H. Schroth, M. Sander, *Environ. Sci.*, 2016, 50, 6423.
- [4] R. B. Channon, M. B. Joseph, E. Bitziou, A. W. T. Bristow, A. D. Ray, J. V. Macpherson, *Anal. Chem.*, 2015, 87, 10064.
- [5] L.G. Shaidarov, A. V. Gedmina, I. A. Chelnokova, M. L. Artamonova, H. C. Budnikov, *J, Anal. Chem.*, 2016, 68, 536.
- [6] D. Ogonczyk, M. Gocyla, M. Opallo, Analyst, 2016, 141, 4319.
- [7] J. Kitikul, S. Satienperakul, A. Preechaworapun, P. Pookmanee, T. Tangkuram, *Electroanalysis*, 2016, *in press*.
- [8] I.A-Martos, E. E. Ferapontova, Anal. Chem., 2016, 88, 3608.
- [9] J. Hui, J. Cui, Y. Wang, Y. Zhang, J. Liang, X. Zhang, W. Chen, E. E. Ogabiela, S. B. Adeloju, Y. Wu, J. Electrochem. Soc. 2014, 161, B291.
- [10] S. Sansuk, E. Biziou, M. B. Joseph, J. A. Covington, M. G. Boutelle, P. R. Unwin, J. V. Macpherson, *Anal. Chem.*, **2013**, 85, 163.
- [11] A. K. B-Blasov, J. Zajda, A. Eldourghamy, E. Malinowska, M. E. Meyerhoff, *Anal. Chem.*, 2014, 86, 4041.
- [12] Q. Li, C. B-McAuley, N. S. Lawrence, R. S. Hartshorne, C. J. V. Jones, R. G. Compton, J. Solid State Electrochem., 2014, 18, 1215.