
� �
This is the accepted version of the following article: Naoki Fujieda and Atsuki Okuchi, A Novel Remote FPGA Lab
Platform Using MCU-based Controller Board, 12th International Conference on Teaching, Assessment and Learning for
Engineering (TALE 2023), pp. 188–193 (11/2023), which has been published in final form at https://doi.org/10.1109/
TALE56641.2023.10398409.
©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works.� �

A Novel Remote FPGA Lab Platform Using
MCU-based Controller Board

Naoki Fujieda and Atsuki Okuchi
Department of Electrical and Electronics Engineering,

Faculty of Engineering,
Aichi Institute of Technology,

Toyota, Aichi, Japan
nfujieda@aitech.ac.jp (Naoki Fujieda)

Abstract—This paper introduces a new remote FPGA lab
platform that aims to overcome a problem of existing solutions
— difficulty of giving students a feeling of touching hardware.
The key component of the proposed platform is an inexpensive
controller board that communicates changes of I/O ports with an
FPGA board on a remote server. By distributing the controller
boards to students, they will virtually touch hardware even in
the remote lab environment. We describe an overall design and
implementations of hardware/software components in this paper.
According to our evaluation, the latency of the proposed platform
was 72% smaller than a WebCam-based solution.

Index Terms—Remote laboratory, Field programmable gate
arrays, Dynamic partial reconfiguration

I. INTRODUCTION

In 2020, the COVID-19 pandemic forced professors and
instructors all over the world to switch their classes and
labs from in-person to remote [22]. Thanks to advances in
information and communication technologies such as an LMS
(Leaning Management System), a Web conference system, and
video streaming, remote classes have become easy to set up.
However, remote labs are still much more difficult, especially
when they require hardware equipments.

A major challenge for a remote lab is how to achieve lab
experiences equivalent or similar to those in the physical lab.
A remote lab platform that overcomes this challenge will be
useful even though the physical lab is avaliable, because it
enables self-directed learning of students without temporal or
spatial limitation. Regarding the learning of digital design and
embedded systems, various platforms based on FPGA (Field-
Programmable Gate Array) have been proposed to this end
[1], [2], [9], [11], [13], [18], [21], [24].

A problem of existing remote FPGA lab platforms is
difficulty of giving students a feeling of touching hardware
through the handling of remote system. Most of the existing
platforms provide virtual access to input ports of the FPGA
board through a Web interface. However, this is not enough for
some students to understand the difference of digital design
from software programming, especially when they are using
HDL (Hardware Description Language). Of course, it is not
desirable to lend an FPGA board to each student. We could
purchase an FPGA module, designed for edge computing, for
several tens of USD [17]; however, it has no or very few I/O
components for students to handle, such as switches, LEDs,
and seven-segment LEDs. An FPGA board suitable for labs
costs at least 80 USD [3], [19]. A student might handle their
board improperly, which results in an accidental breakdown of
their board. If multiple classes share the same physical lab by
different lab hours, extra sets of boards have to be prepared.
These can be financial burdens.

To overcome this problem, we propose a novel remote
FPGA lab platform using an inexpensive controller board
based on an MCU (Micro-Controller Unit). The MCU and the
remote FPGA communicate command strings with each other.
The controller board translates changes of input ports into
command strings and sends to the remote FPGA. It receives
changes of output ports of the FPGA board as command
strings and translates them back. To achieve this, a user
circuit has to be combined with a prepared I/O circuit in
the remote FPGA, using dynamic partial reconfiguration. We
also developed a GUI front-end application to automate this
process. In this paper, the proposed platform is described in

detail and the latency is evaluated.

II. RELATED WORK

There are two typical approaches to achieve remote labs that
require hardware equipments: to simulate the hardware or to
provide virtual access to the remote hardware [22]. We briefly
review existing environments in the separated subsections.

A. Circuit Simulation

Deeds [5] is a simulation-based learning environment for
digital design and MCU. Deeds is composed of a digital
circuit simulator Deeds-DcS, a state machine simulator Deeds-
FsM, and an MCU emulator Deeds-McE. Using the built-in
schematics editor of Deeds-DcS, students can easily construct
circuits and see the values of signals. It also provide an
integration with the Intel Quartus II EDA (Electronic Design
Automation) tool. However, this feature assumes that the EDA
tool is installed on the local machine and the student have a
specific FPGA board on hand.

To understand how a processor or an MCU works, various
educational processor simulators are available. Deeds-McE,
introduced in the previous paragraph, is one of them. They
usually includes an assembly code editor. Students can write
their program and trace the changes of registers and memories
instruction by instruction. Some simulators have more com-
plicated visualization features for a pipelined datapath and/or
caches [7], [15]. The intended users of these tools are students
who are already familiar with digital design and can follow the
flow of signals from a block diagram. The proposed platform
targets students on a more elementary level.

If an instructor put a higher value on the acquirement of
HDL skills than using FPGA boards, an online HDL learning
environment would be an attractive option. An IDE (Integrated
Development Environment) developed by Kumar et al. [10]
has a feature of submitting a circuit, written in VHDL, to
a server. The student then receives whether the waveforms
of its output signals are correct. VELS [14] is an e-mail-
based automated grading system for VHDL, which can give
a parameterized assignment for each student. Trenas et al.
[20] presented a grading system working on the Moodle
LMS, which combined formal checking and functional test.
Jelemenska et al. [8] developed another Moodle-based system
that assessed the similarity of code blocks. It can detect a
circuit that is functionally equivalent but not written in the
way specified in the assignment. EDA Playground [6] is a
browser-based HDL simulation and synthesis environment. It
supports various tools, both commercial and open source. It
also includes a waveform viewer called EPWave in order to
display the result of circuit simulation on the user’s browser.
However, since it is not an open source project, a modification
tailored to each lab environment is difficult.

B. Remote FPGA Lab

RBoot [2] is the first remote FPGA lab platform in the lit-
erature. It provides a pool of sixty-four Xilinx ML-310 boards
and a software infrastructure, which reserves and controls the

boards for students. It is not described how a student see the
behavior of a circuit on the reserved FPGA board. Subsequent
platforms offer either of three kinds of measures to observe
the output of the boards: using a WebCam [9], [18], via a Web
interface that mimics the board [21], [24], and both [1], [11],
[13]. Most of them provide access to input ports through a
Web interface.

Wan et al. [21] presented a Web-based remote FPGA lab
for their computer organization course. Their FPGA board in-
cludes two FPGA chips: an experiment FPGA is programmed
by a student, while a monitor FPGA controls and observes
the I/O ports of the experiment FPGA. A management server
is on the public cloud. It authenticates students, allocates the
boards to the students, and provides a Web front-end based on
Vue.js. A shortcoming of their platform is that custom boards
with multiple FPGA chips are required. If a workflow using
dynamic partial reconfiguration is available to students, the
functionality of these FPGAs can be integrated into a single
FPGA.

RemEduLa [1] is a remote FPGA lab with three kinds of
commercially available board (ZedBoard, Basys 3, and PYNQ-
Z1), fourty-eight boards in total. It adopts an overlay design
consists of a prepared base circuit and a user-space circuit. The
base circuit includes VIO (virtual I/O) IP cores and a JTAG
interface. The VIO can be controlled and observed through a
Web interface. The working board can also be seen from a
WebCam.

The most important difference of our proposal from these
existing platforms is that I/O ports of a remote FPGA board is
controlled and monitored by an inexpensive controller board.
This will help students have a stronger feeling of touching
hardware in a remote lab.

VirtLAB [16] has a similar idea to ours: distributing rel-
atively inexpensive boards to students. The VirtLAB board
includes two MCUs and two FPGA chips. One pair of MCU
and FPGA is open to students, while the other is for manage-
ment, measurement, signal generation, and so on. The goal
of VirtLAB is to minimize the unit cost of electronics lab
equipment by integrating expensive instruments, such as a
digital oscilloscope and a waveform generator, into a single
board. In the proposed platform, a remote board costing
hundreds of USD is controlled by a local board costing tens
of USD. Briefly speaking, the assumed cost ranges differ by
about one order of magnitude.

III. SYSTEM DESIGN

A. Overview

Figure 1 depicts the overview of our remote FPGA lab.
There, a student anywhere in our campus has a controller board
and his own or shared PC, while each of the FPGA boards
is connected to a development VM (Virtual Machine). The
both boards are recognized as USB devices and communicate
via the UART (Universal Asynchronous Receiver Transmitter)
protocol. The baud rate is set to 115,200 bps. Since we use
Digilent Nexys A7 [4] boards that include Xilinx Artix-7
FPGA for our lab, Vivado is installed to the development

Student PC

(4) GUI
Frontend

(2) Client
Connector

(1) Controller Board

USB/UART

Gateway
VM

Campus LAN

Internet

Public Cloud

(5) Reservation System

TCP/IP

SSH Port Forwarding

Development VM 1

(2) Server
Connector

Web Browser

Development VM 2

Development VM 3

USB/UART

FPGA Board

User
Circuit

(3) I/O
Circuit

FPGA

EDA Tool

HTTPS

SSH

Fig. 1. Overview of the proposed remote FPGA lab.

TABLE I
DEFINITION OF CHARACTERS OF COMMAND STRINGS.

Character Definition
0–3 Select a digit of the seven-segment LED.
4 Select the array of LEDs.
A–H/a–h Turn on/off the corresponding segment of

the selected LEDs.
I–P Select the corresponding slide switch.
Q–S Select the corresponding tactile switch.
U/u Turn on/off the selected switch.
V followed by X Request for board-specific response.
V followed by Z Request to resend all of the values of

LEDs or switches.

VMs. The student connects to the gateway VM via SSH
and accesses to one of the development VMs using port
forwarding. Currently we set up five development VMs. All of
the VMs, including the gateway, are built on a single physical
server of Ubuntu 20.04 LTS. Although the security policy of
our institute does not allow SSH access from the Internet,
technically the proposed platform can be open to the Internet.

Table I summarizes the definition of the commands. The
controller board has eight LEDs, a 4-digit seven-segment
LED, eight slide switches, and three tactile switches. Each
of the changes of these I/O components is translated into a
command string, which consists of two ASCII characters. The
changes of switches are sent from the controller board, while
the changes of LEDs are sent from the FPGA board. Two
special commands are also defined to let the student PC or the
development VM recognize the board and refresh its state.

We developed the following five components, which will be
described later in the separated subsections of Section IV:

1) a controller board connected to the student PC,
2) client and server editions of connector apps that rec-

ognize the boards and forward command strings to the
other side,

3) an I/O circuit on the FPGA side for translation between
changes of I/O ports and command strings,

4) a GUI front-end on the student PC to automate the
development process, and

5) a cloud-based reservation system.

1 open_checkpoint $checkpoint_base
2 read_checkpoint -cell [get_cells DR]

$checkpoint_proj
3 opt_design
4 place_design
5 route_design
6 write_bitstream -force ${project_name}.bit
7 close_project

Fig. 2. The main part of the script of bitstream generation.

B. Students’ workflow

In the proposed remote lab, a student first prepares files
required by the development VM in the local PC. They
writes their own circuit in VHDL, either by hand or using
a schematics editor like Deeds-DcS [5]. They then start up
the GUI front-end and choose a folder of the VHDL codes.
The front-end recognizes the top entity of the student’s circuit
and lists its I/O ports. The student assigns the ports to I/O
components of the FPGA board using GUI interface. After
that, they make the front-end generate required files, including
a wrapper of the user circuit and three Tcl scripts. All of the
VHDL files, generated scripts, and the prepared checkpoint
file of the I/O circuit are uploaded using a SCP/SFTP client
before using the development VM. In parallel, a student makes
a reservation of a desired time slot of a development VM by
accessing the reservation system.

When the beginning of the reserved time slot comes, the
student runs the ssh command to log in the gateway VM,
adding two -L options for port forwarding. One port is used
by RDP (Remote Desktop Protocol) to launch Vivado in the
remote desktop. The other port is used by the connector apps
to control the FPGA board.

After launching Vivado in the remote desktop, the student
synthesizes their circuit, generates a bitstream file, and pro-
grams the FPGA using the Tcl scripts obtained from the front-
end. The task of each of the scripts is as follows.

• The first script opens or creates a Vivado project that
contains all of the VHDL files. The student then synthe-
sizes the user circuit and saves the synthesis result as a
checkpoint file. The student can also simulate the circuits
if they have a testbench.

• The second script reads the checkpoint files of both the
user circuit and the I/O citcuit and implements them.
Figure 2 extracts the main part of the second script. This
follows a tool flow of dynamic partial reconfiguration,
called DFX (Dynamic Function eXchange) by Xilinx
[23].

• The last script opens a hardware manager screen of
Vivado. The student then specifies the generated bitstream
file and programs the FPGA.

Finally, the student starts up the client edition of the
connector app. They specify the COM port number of the
controller board and the TCP port number to connect the server
edition of the app. When the both ports are connected, the
student will be able to turn on and off the switches of the

Fig. 3. Appearance of the controller board.

TABLE II
MAIN COMPONENTS OF THE CONTROLLER BOARD. PRICES ARE IN USD.

Part Unit price Qty Subtotal
PIC18F4450 MCU 5.4500 1 5.45
Slide switch 0.6023 8 4.82
Seven-segment LED 2.2704 1 2.27
Mini USB connector 0.9019 1 0.90
Green LED 0.0744 8 0.60
ULN2003A Transistor Array 0.5213 1 0.52
Others 2.20
Total 16.76

FPGA board and see the changes of the LEDs virtually, using
the controller board.

IV. IMPLEMENTATION OF COMPONENTS

A. Controller Board

Figure 3 depicts the appearance of the controller board. The
dimension of the board is 130 × 55 mm. The board includes
a Microchip PIC18F4450 MCU [12], which incorporates a
USB 2.0 module. Using the USB library from the Microchip
Libraries for Applications, the MCU operates as a USB
CDC (Communications Device Class) device, which means
an external USB-UART converter such as FTDI FT232 is
not required. The MCU has thirty-three user I/O ports. We
assigned two for USB (D+ and D-), eleven for the switches,
eight for the LEDs, and twelve for the seven-segment LED. We
preferred through-hole components for ease of implementation
of prototypes by hand.

Table II summarizes the price of the main components of the
controller board. We assumed that we would purchase com-
ponents required for 100 boards from Digi-Key Electronics in
June, 2023. Note that board manufacturing and mounting costs
are not included in the table. The cost of components for each
board in this assumption is less than 20 USD, excluding tax.
However, the total unit cost in our first test production became
around 65 USD, including tax. This was mainly because the
mounting cost of through-hole components was high. Our next
prototype would have as many surface-mount components as
possible to reduce the cost, though it is left for future work.

B. Connector Apps

Figure 4 abstracts the client edition of the connector app,
written in C# and based on WPF (Windows Presentation
Foundation). A student can select the COM and TCP port
numbers by clicking the corresponding labels. If the board is
successfully recognized after clicking the connect button, the

Connector App (Client)

DevicePort

Write()

ReadLoop()

TCPPort

Write()

ReadLoop() to/from
Development

VM

Controller
Board

USB/UART TCP/IP

Fig. 4. Appearance and internal of the client edition of the connector app.

SenderReceiver

RXD TXD

UART Controller

Data Read Empty Data Write Full
Sw

it
ch

er

GeneratorChecker

I/O Translator

User Circuit

I/O Circuit
LED
SW

AN
SEG

Fig. 5. Block diagram of the I/O circuit.

color of the corresponding label becomes blue. If both of the
boards are recognized (i.e., the controller board is working),
the color of the bar in the middle also becomes blue.

Management of the serial port to the controller board and
the TCP connection to the development VM is done by
the respective classes, DevicePort and TCPPort. The both
classes have methods of the same names: Open(), Close(),
ReadLoop(), and Write(). The ReadLoop() methods
are executed in dedicated threads. The read characters are
passed to the Write() method of the other class, only when
the both boards are recognized.

The server edition of the connector app does similar tasks
to the client edition. The differences between the editions are
twofold. First, the server edition is written in Python and
executed as a daemon process. Second, the TCPPort class
behaves as a TCP server, instead of a client.

C. I/O Circuit

Figure 5 describes the block diagram of the I/O circuit.
The circuit has three major components: a UART controller,
a switcher, an I/O translator. The UART controller provides a
simple FIFO-based interface. The output signals of the user
circuit are also connected to output components of the board.

Fig. 6. Appearance of the front-end (the source directory location is blurred).

The switcher monitors the received characters and see if
a request command (“VX”) is sent from the server. Before
receiving the command, the switcher simply connects the
switches of the board to the user circuit. This functionality
is required to let the user circuit work as if the I/O circuit is
not present, when the board is not connected to the server. If
the request command comes, the I/O translator starts working.

The checker part stores the current state of the switches and
monitors the command strings. If it receives a character to turn
a switch on or off (‘U’ or ‘u’), it sets the state of the selected
switch to ‘1’ or ‘0’, respectively.

The generator part stores the state of the LEDs that the
controller board is supposed to know. If it differs from the
current state of the LEDs of the user circuit, the generator part
picks one of the different segment, generates the corresponding
command string, and updates the state of that segment.

The generator also includes sampler circuits. The goals
of the samplers are threefold. The first goal is to reduce
the frequency of the commands being sent, considering the
very limited bandwidth of UART and processing speed of the
MCU. The frequency of the sampling signal is set to 100
Hz and 500 Hz for the seven-segment LED and the LED
array, respectively. The second goal is to make the output of
the seven-segment LED stable, which is dynamically driven.
The sampler for the seven-segment LED tracks its appearance.
No additional commands are sent as long as the appearance
remains unchanged. The last goal is to roughly reproduce the
PWM (pulse width modulation) signals of LEDs. Depending
on the sampling period, simple sampling might turn PWM
signals into unintended ones. To avoid this, the sampler for
the LEDs has a thresholding circuit, which determines the final
output based on the time ratio of outputting ’1’ in a period.

FPGA Board

User PC

Controller Board

Physical Server

WebCam

Fig. 7. Equipments used in our evaluation.

D. GUI Front-end

Figure 6 depicts the appearance of the GUI front-end, after
the I/O ports are assigned and the bitstream file is generated.
The front-end is also written in C# and based on WPF. At
the center of the window, the picture of the bottom half of
the board is shown and each of the components that can be
assigned a signal is shown with a gray frame. When a student
assign a signal by selecting a component with a drop-down list
or performing drag and drop, the color of the corresponding
frame becomes cyan.

Generating files for Vivado and launching Vivado can be
done with the buttons in the bottom row. Since Vivado is
installed in the students’ PCs of our physical lab, they can
continue using the front-end there, until programming the
FPGA.

E. Reservation System

In addition, we developed a simple reservation system
with a combination of Forms, Excel, and Power Automate
of the Microsoft 365 cloud service. A student can make a
reservation by posting an answer at the reservation form. The
posted answers are automatically added to a table in an Excel
workbook by a cloud flow of Power Automate. The latest
reservations for each student are extracted, and the first student
who reserved each time slot is displayed in a status sheet of
the workbook.

V. EVALUATION

At the time of writing this paper, we have not yet received
feedbacks from lending our controller board in our labs.
Meanwhile, generally one of the most important concerns for
a network-based system is latency: in our case, students may
find difficulties on using the system if the latency is too high.
We made an experiment, presented in this section, to compare
the latency of the proposed system with a WebCam-based
solution,

A. Methodology

Figure 7 shows a view of our evaluation experiment. There
are five kinds of equipments: a physical server, FPGA boards,

TABLE III
EVALUATION RESULTS OF LATENCY (IN SECONDS).

FPGA Controller WebCam
Time Time Latency Time Latency
1 122.24 122.22 0.02 122.13 0.11
2 128.92 128.90 0.02 128.80 0.12
3 135.89 135.87 0.02 135.80 0.09
4 141.76 141.74 0.02 141.66 0.10
5 148.59 148.57 0.02 148.46 0.13
6 154.91 154.80 0.11 154.80 0.11
7 160.30 160.29 0.01 160.20 0.10
8 165.67 165.66 0.01 165.56 0.11
9 170.91 170.80 0.11 170.80 0.11

10 177.95 177.93 0.02 177.80 0.15
Avg. 0.036 0.113

a user PC, a controller board, and a WebCam. The FPGA
boards and the WebCam are connected to the server, while the
controller board is plugged into the user PC. The controller
board reflects the state of the LED array and the seven-
segment LED using the proposed system, depicted in Fig. 1.
For comparison, the server streams a video from the WebCam
using the mjpg-streamer software. The video is sent to the user
PC and displayed in a Web browser. The server is connected
via Ethernet while the user PC is connected via Wi-Fi. The
ping value between them was 1.6 millseconds on average.

The FPGA board is programmed to work as a stopwatch
that measures elapsed time in 1/100 seconds. Digits in the
100 seconds through 1/10 seconds places are displayed on
the seven-segment LED. Digits in the 1/10 and 1/100 seconds
places are shown in the left and right halves of the LED array,
respectively. These digits are described in gray code to reduce
read error. The FPGA board, the controller board, and the
monitor of the user PC (i.e., the video sent from the WebCam)
are photographed at a time to compare the latency. We took
ten pictures and read the elapsed times from them.

B. Result

Table III tabulates the times read from the pictures. The
columns with Latency are calculated from the time difference
from the FPGA board. The proposed platform achieved 36
milliseconds of latency on average, which was 72% smaller
than a WebCam-based solution. Students will have a more
timely experience with the proposed platform.

In the most cases, the latency of the proposed platform was
20 milliseconds. The possible causes of the latency are the
sampler circuits, the network, UART, and the processing of
the MCU. The latency from each of the first three causes
are estimated as up to several milliseconds. This leads to an
inference that most of the latency comes from the MCU.

However, in two cases (i.e, #6 and #9), large latency of 110
milliseconds was observed. We think the actual latency was
10 milliseconds but we failed to read the digit of 1/10 seconds
places as 9. It is probably due to the thresholding circuit in
the samplers. When an LED turns off and another turns on at
the same time, it is possible that the both signals do not reach
the threshold. This might lead both LEDs on the controller
board to turning off for a short period. We leave it for future

work to conduct another evaluation to measure the latency of
the proposed platform in a more precise, reliable way.

VI. CONCLUSION

In this paper, we presented a new remote FPGA lab platform
where the I/O ports of the FPGA board were controlled and
observed by an inexpensive controller board. Starting from the
spring semester in 2023, we are lending our controller boards
to some of the students and they are enjoying their remote
FPGA lab. Making evaluations in educational context through
these experiences, including feedbacks from the students, is
left for future work.

Based on the developed platform, many ways of extension
will be possible. For example, if we modified the I/O circuit
to use VIO cores and a JTAG interface (as RemEduLa did),
we might release the USB/UART port for the user circuit.
It might be interesting if the controller board had an I/O
component that was not present in the target FPGA board. Of
course, incremental improvements to resolve dissatisfactions
from students are also important. We will incorporate such
improvements into future versions of our platform.

ACKNOWLEGMENT

The first author personally thanks Prof. Kenji Kise and
Dr. Takefumi Miyoshi for giving us know-hows of operating
remote development servers.

REFERENCES

[1] C. Blochwitz et al., “RemEduLa – Remote Education Laboratory for
FPGA Design Technology,” in 55th IEEE International Symposium on
Circuits and Systems, 2022, pp. 1773–1777.

[2] K. Datta and R. Sass, “RBoot: Software Infrastructure for a Re-
mote FPGA Laboratory,” in 15th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, 2007, pp. 343–344.

[3] Digilent. Academic Price list. [Online]. Available: https://digilent.com/
shop/academic/academic-price-list/

[4] ——. Nexys A7 Reference Manual. [Online]. Available: https://digilent.
com/reference/programmable-logic/nexys-a7/reference-manual

[5] G. Donzellini and D. Ponta, “From gates to FPGA: Learning digital de-
sign with Deeds,” in 3rd Interdisciplinary Engineering Design Education
Conference, 2013, pp. 41–48.

[6] Doulos. EDA Playground. [Online]. Available: https://edaplayground.
com/

[7] R. Giorgi and G. Mariotti, “WebRISC-V: a Web-Based Education-
Oriented RISC-V Pipeline Simulation Environment,” in Workshop on
Computer Architecure Education held in conjunction with ISCA ’19,
2019, pp. 3:1–3:6.

[8] K. Jelemenska, P. Cicak, and M. Gazik, “VHDL models e-assessment
in Moodle environment,” in 14th International Conference on Emerging
eLearning Technologies and Applications, 2016, pp. 141–146.

[9] T. Kodama, Y. Suzuki, and S. Chiba, “Development of a remote
practice system for embedded system education,” in 6th IEEE/ASME
International Conference on Mechatronic and Embedded Systems and
Applications, 2010, pp. 53–58.

[10] A. Kumar, R. C. Panicker, and A. Kassim, “Enhancing VHDL Learning
through a Light-weight Integrated Environment for Development and
Automated Checking,” in 2nd IEEE International Conference on Teach-
ing, Assessment and Learning for Engineering, 2013, pp. 570–575.

[11] C. A. Mayoz et al., “FPGA remote laboratory: experience of a shared
laboratory between UPNA and UNIFESP,” in 14th Technologies Applied
to Electronics Teaching Conference, 2020, pp. 1–8.

[12] Microchip Technology Inc., PIC18F2450/4450 Data Sheet, DS39760D,
2008.

[13] F. Morgan, S. Cawley, and D. Newell, “Remote FPGA Lab for Enhanc-
ing Learning of Digital Systems,” ACM Transactions on Reconfigurable
Technology and Systems, vol. 5, no. 3, pp. 18:1–18:13, 2012.

[14] M. Mosbeck, D. Hauer, and A. Jantsch, “VELS: VHDL E-Learning
System for Automatic Generation and Evaluation of Per-Student Ran-
domized Assignments,” in 4th IEEE Nordic Circuits and Systems Con-
ference, 2018, pp. 1–7.

[15] M. B. Petersen, “Ripes: A Visual Computer Architecture Simulator,” in
Workshop on Computer Architecure Education held in conjunction with
ISCA ’21, 2021, pp. 5:1–5:8.

[16] M. R. Roch and M. Martina, “VirtLAB: A Low-Cost Platform for
Electronics Lab Experiments,” Sensors, vol. 22, no. 13, pp. 4840:1–
4840:18, 2022.

[17] Seeed Technology. Spartan Edge Accelerator Board. [Online]. Available:
https://www.seeedstudio.com/Spartan-Edge-Accelerator-Board-p-4261.
html

[18] J. Soares and J. Lobo, “A Remote FPGA Laboratory for Digital Design
Students,” in 7th Portuguese Meeting on Reconfigurable Systems, 2011,
pp. 95–98.

[19] Terasic Inc. DE10-Lite Board. [Online]. Available: https://www.terasic.
com.tw/cgi-bin/page/archive.pl?Language=English&No=1021

[20] M. A. Trenas, J. Ramos, E. D. Guitérrez, S. Romero, and F. Corbera,
“Use of a New Moodle Module for Improving the Teaching of a Basic
Course on Computer Architecture,” IEEE Transactions on Education,
vol. 54, no. 2, pp. 222–228, 2011.

[21] H. Wan, K. Liu, J. Lin, and X. Gao, “A Web-based Remote FPGA
Laboratory for Computer Organization Course,” in 29th ACM Great
Lakes Symposium on VLSI, 2019, pp. 243–248.

[22] X. Wang et al., “A Survey on the E-learning platforms used during
COVID-19,” in 11th IEEE Annual Information Technology, Electronics
and Mobile Communication Conference, 2020, pp. 808–814.

[23] Xilinx Inc., Vivado Design Suite User Guide: Dynamic Function eX-
change, User Guide UG909 v2020.2, 2022.

[24] Y. Zhang et al., “Remote FPGA lab platform for computer system
curriculum,” in ACM Turing 50th Celebration Conference, 2017, pp.
3:1–3:6.

