
� �
This is the accepted version of the following article: An HLS implementation of on-the-fly randomness test for TRNGs,
10th International Symposium on Computing and Networking (CANDAR 2022), pp. 151–157 (11/2022), which has been
published in final form at https://doi.org/10.1109/CANDAR57322.2022.00028.
©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works.� �

An HLS implementation of
on-the-fly randomness test for TRNGs

Ryusei Oya and Naoki Fujieda Shuichi Ichikawa
Department of Electrical and Electronics Engineering, Department of Electrical and Electronic

Faculty of Engineering, Information Engineering,
Aichi Institute of Technology, Toyohashi University of Technology

Toyota, Aichi, Japan Toyohashi, Aichi, Japan
nfujieda@aitech.ac.jp (Naoki Fujieda) ichikawa@ieee.org (Shuichi Ichikawa)

Abstract—In this paper, we present an FPGA implementation
of a randomness test called the count-the-ones test, which can
be used to assure or control the quality of true random number
generators (TRNGs) on-the-fly. Since our implementation adopts
fixed-point arithmeric operations, reducing their precision is a
trade-off between the amount of hardware and computational
error. We used high level synthesis (HLS) to assess this trade-
off easily. Based on our evaluation, we focused on two versions
of circuits. A high-precision circuit required 607 LUTs and 536
FFs for 0.06% of an average error ratio of χ2 value, whereas a
resource-saving circuit reduced the amount of hardware to 377
LUTs and 430 FFs with 1.48% of an error ratio.

I. INTRODUCTION

On the back of concern over security of digital systems,
the importance of TRNGs (True Random Number Generators)
has been grown. A TRNG provides a sequence of random
numbers in an unpredictable way, according to a physical
phenomenon. Particularly for a system based on an FPGA
(Field-Programmable Gate Array) device, it is desirable to
utilize logic [7], [14], clocking [4], and other elements of the
FPGA to implement a TRNG.

A major concern for TRNGs is that the quality of their
output random numbers may vary widely with operating
conditions, individual difference of devices, and so on. It is
known that attackers can lead a TRNG to failure by injecting
frequencies into its power supply [9]. A sign of failure has
to be detected to stop the random number generation or warn
the system about it. Some types of TRNGs can control their
behavior by a parameter input. They need an auto-calibration
mechanism to find a proper parameter for each individual
device and/or operating condition [1], [13]. Some other types
of TRNGs are designed to improve its randomness at the
cost of increasing power consumption or decreasing bit rate
of generation. On-line quality control techniques have been

recently proposed for them to make a better trade-off [2], [6].
To realize these quality assurance and/or control systems, an
on-the-fly test circuit is essential to measure or estimate the
quality of random numbers.

In this paper, we present an FPGA implementation of a
statistical test called the count-the-ones test, which is included
in the diehard battery of tests of randomness [10]. Although
this test is much more complicated than other tests imple-
mented by hardware, such as the monobit test and the runs
test from the NIST test suite [15], it can detect flaws of
random numbers that cannot be detected with simple tests.
Our implementation is optimized for block memory and DSP
(Digital Signal Processing) units of FPGA to minimize the
required amount of hardware. Since our implementation adopts
fixed-point arithmeric operations, reducing their precision is a
trade-off between the amount of hardware and computational
error. To easily assess it, we coded the test in C++ and
synthesized circuits using the Xilinx’s Vitis HLS (High-Level
Synthesis) tool [19]. We evaluate the error ratio and the amount
of hardware with various set of precisions.

The rest of this paper is organized as follows. In section II,
we briefly introduce hardware implementations of randomness
tests and existing quality assurance and control systems for
TRNGs. The algorithm of the count-the-ones test is explained
and analyzed in Section III, and the proposed hardware im-
plementation is described in Section IV. Section V presents an
evaluation about the error ratio and the amount of hardware
of the synthesized circuits. We conclude the paper in Section
VI.

II. BACKGROUND

A. Hardware Implementations of Randomness Tests

The output sequence of random numbers from a TRNG
must be unpredictable and, at least, free from regularity. To
confirm that there is no evidence of regularity found from
them, various randomness tests have been proposed and used.
Since regularity may appear from different aspects, test suites
have also been proposed by combining a number of tests with
different characteristics. Famous test suites include the diehard
test [10] and the NIST SP 800–22 test suite [15]. Sets of tests
defined in standards such as AIS–31 [8], FIPS 140–2 [12] and
NIST SP 800–90B [17] have also been used.

The basis of randomness tests is hypothesis testing. There,
the null hypothesis is set that ones in the given bit sequence
appear with the probability of 1/2 and they are independent
and identically distributed. A statistical value is calculated
from the bit sequence with a certain algorithm. The probability
of obtaining a value at least as extreme as the observed value,
assuming that the null hypothesis is correct, is defined as
the p-value. If the p-value becomes extremely low, the null
hypothesis is rejected, meaning that the bit sequence has
regularity.

In 2009, Santoro et al. first presented a hardware implemen-
tation of randomness test for checking the output bit sequence
of a TRNG on-the-fly [16]. They implemented a variant of the
Maurer’s universal test [11], which is also included in NIST
test suite (as the universal test) and AIS–31 (as the Test T8).
They discussed an approximation of the logarithm function,
required to estimate the entropy of the bit sequence.

Since then, various hardware implementations of tests have
been proposed. Most of the implemented tests were relatively
simple tests, included in NIST SP 800–22 and FIPS 140–2, in
consideration of the required amount of hardware. Although
some types of regularity can be detected only by tests in the
diehard test, they have been seldom implemented by hardware
because of their complexity.

To the best of our knowledge, Vaskova et al. have presented
the only hardware implementation of tests from the diehard
test in the past [18]. They selected four tests: the bitstream
test, the OPSO test, the OQSO test, and the DNA test, which
are based on the same algorithm, and proposed an efficient
usage of hardware. However, the goal of their research is to
accelerate time-consuming randomness tests. The amount of
hardware of their implementation was too large to be used for
on-the-fly testing of a TRNG.

In this paper, we select another test from the diehard test,
called the count-the-ones test. As we will describe later in Sec-
tion IV and Section V, this test can be effiently implemented
by hardware and it requires only hundreds of LUTs (look-up
tables) and FFs (flip-flops), by allowing computational error
due to fixed-point arithmetic operations.

B. Quality control systems for TRNGs

More recently, on-line quality control mechanisms for
TRNGs have been proposed. Most of the implementations of

randomness tests presented in Section II.A are used for quality
assurance: they detect a flaw from the output of TRNG to
stop the generation or alarm the system. In addition, quality
control systems can find an appropriate parameter of the target
TRNG and/or pursue a better trade-off between the quality of
generated random numbers and the cost of generation (e.g.,
increase of power consumption).

Carriera et al. presented a control system for an on-line
parameter search for TRNG [1]. The target TRNG is based
on a transition effect ring oscillator and its behavior can be
changed by a parameter [21]. It gives biased output in case
of taking too long time to generate random bits. To find an
appropriate parameter, the system has to check the number of
clock cycles for generation using a counter, in addition to its
output using basic randomness tests. The idea of estimating
entropy not only from output random bits but also from
the behavior of ring oscillators is also seen in other control
systems [2], [13].

Gonzalez et al. [6] proposed a quality control method for
two types of TRNGs, multiple ring oscillators and a self-
timed ring, to balance the randomness quality and power
consumption. By decreasing the number of ring oscillators
or the number of stages of the self-timed ring, the power
consumption can be reduced in exchange for the loss of
entropy. With a set of simple randomness tests [20], the system
checks if the output bit sequence has entropy higher than
a certain threshold. The threshold is determined depending
on the intended use of the random numbers. This enables to
reduce power consumption of the TRNG in some applications.
Another system presented by Gantel et al. [5] used the results
of on-line randomness tests to determine if the output of the
TRNG needs to be post-processed.

We think that the proposed implementation of the count-
the-ones test becomes a useful component of quality control
systems. In these systems, tests were often selected according
to the characteristics of the target TRNG and used comple-
mentarily. They might expect test circuits to be implementable
with minimum amount of hardware in some cases, rather than
to have high precision of test results. Our implementation is
based on HLS, in order to make it easy to assess the trade-off
between amount of hardware and precision.

III. ANALYSIS OF COUNT-THE-ONE’S TEST

A. Description of the algorithm

Fig. 1 abstracts the procedure of the count-the-ones test.
The test requires 2,048,032 bits (256,004 bytes) of random
numbers. It consists of three steps: 1) initialization of arrays
(lines 1–6), 2) count of the occurrence frequency of each word
(lines 7–15), and 3) calculation of the difference of χ2 values
(lines 16–26). The p-value is calculated from the difference,
denoted by chsq in Fig. 1.

In the second step, each input byte is first translated into
an alphabet, according to the number of ones in the byte (line
8). Table I depicts the mapping of alphabets, along with the
occurrence probability of each alphabet, assuming that ones
appear with the probability of 1/2, and internal encoding in

1: for str4 in 4-letter words do
2: freq4[str4]← 0
3: end for
4: for str5 in 5-letter words do
5: freq5[str5]← 0
6: end for
7: for i in 0 to 256003 do
8: letteri ← byte to letter(rand bit8i:8i+7)
9: if i ≥ 5 then

10: str4← letteri−3:i

11: str5← letteri−4:i

12: freq4[str4]← freq4[str4] + 1
13: freq5[str5]← freq5[str5] + 1
14: end if
15: end for
16: chsq ← 0
17: for str4 in 4-letter words do
18: ev ← expected freq(str4)
19: ov ← freq4[str4]
20: chsq ← chsq − (ov − ev)2/ev
21: end for
22: for str5 in 5-letter words do
23: ev ← expected freq(str5)
24: ov ← freq5[str5]
25: chsq ← chsq + (ov − ev)2/ev
26: end for
27: z ← (chsq − 2500)/

√
5000

28: p← erfc(z/
√
2)/2

Fig. 1. Pseudocode of the count-the-ones test.

TABLE I
MAPPING OF ALPHABETS IN THE COUNT-THE-ONES TEST.

of ones 0–2 3 4 5 6–8
Alphabet A B C D E

Probability 37/256 56/256 70/256 56/256 37/256
Encoding 000 010 100 011 001

our implementation. It then forms 256,000 1 overlapping 4-
letter (str4) and 5-letter (str5) words and counts the occur-
rence frequency of each word (lines 10–13).

The third step calculates the difference between the χ2 value
for 4-letter words (lines 17–21) and that for 5-letter words
(lines 22–26). The expected frequency (expected freq) of an
n-letter word w0:n−1 is calculated by

256000×
n−1∏
i=0

prob(wi), (1)

where the function prob returns the occurrence probability of
the letter, shown in Table I. The resultant value, chsq, follows
a normal distribution with a mean of 2,500 and standard
deviation of σ =

√
5,000.

B. Considerations on Hardware Implementation

To reduce the amount of hardware, we consider the use
of RAMs, ROMs and fixed-point arithmetic operations in our
implementation. Occurrence frequencies of words (freq4 and

1Due to a bug of the original implementation of the diehard test, the actual
number of words is 255,999 and the first byte is never used.

freq5) can be stored in respective RAMs. The byte to letter
and expected freq functions can be replaced with ROMs
because their outcomes can be pre-calculated. To avoid a
division with the expected frequency (lines 20 and 25 in Fig.
1), reciprocals of expected freq are also pre-calculated and
stored in a ROM.

Fixed-point arithmetic is applied to the calculation of the
chsq value. More specifically, the variables ev and chsq are
stored as fixed-point numbers. Note that the variable ov, the
occurrence frequency of a word, is an integer. Now that we
do not have to consider loss of significance on floating-point
arithmetics, we reverse the order of addition (lines 22–26) and
subtraction (lines 17–21) in order to let chsq be an unsigned
value. Since the bit widths of the fractional portions of the
variables affect the computational precision, we let them be
parameters of our implementation and assess a trade-off with
the amount of hardware in Section V.

The bit widths of the integer portions should be determined
in order to avoid overflow of the chsq value except in an
extreme case. If an overflow is detected, we terminate the
calculation and output the p-value of zero. It is common that
a TRNG with an improper setup outputs zeros or ones con-
stantly. This means all of the 5-letter words become “AAAAA”
or “EEEEE” and the chsq value reaches about 232. However,
it is nonsense to set a large bit width for this case because the
p-value will be approximated as zero after all. We set the width
of the integer portion of chsq as 16 bits and the threshold for
overflow detection as 215 heuristically. An overflow does not
occur with this threshold if the final chsq value is less than
10,000.

In addition, the calculation of z and p-value (lines 27–28 in
Fig. 1) can be excluded from hardware implementation. As we
have explained in Section II.B, a randomness test in a quality
control system is used to check if the estimated entropy or
p-value is within a certain range (like a system proposed by
Gonzales et al. [6]). Such a check can be done with the chsq
value. For example, the condition that the p-value is 0.001 or
higher is approximately equivalent to that the chsq value is
smaller than 2,718.5 (3.09σ higher than the mean).

IV. HARDWARE IMPLEMENTATION

A. Dataflow of Calculation

Figure 2 depicts a block diagram of our implementation of
the count-the-ones test. Note that initialization of the freq4
and freq5 arrays is omitted from the figure. Pipeline registers
inserted automatically by an HLS tool are not considered.
RAMs and ROMs are shown in gray. The diagram has three
sections: calculation of the indices, increment of the counters,
and calculation of the chsq value. The second step in Section
III.A includes the first and second sections, while the third
step correspond to the third section.

First, the indices of RAMs (index4 and index5) are cal-
culated in the first section and the corresponding counters
are incremented in the second section, in a pipelined struc-
ture. Since index4 and index5 become 4-digit and 5-digit
quinary numbers, the numbers of the counters in the RAMs is

byte_to

_letter

ra
n

d
_

in

5x

+

5x

+

freq4

freq5 +1

+1

p
at

te
rn

ev

ev_r

- ^2

*

ov

+/-

ch
sq

5x

+

5x

+

index4

index5

Calculation of Indices

Increment of Counters

Calculation of chsq Value

Fig. 2. Block diagram of proposed implementation of the count-the-ones test.

����� ����� ����� ����� �����

'-' 'A' 'B' 'D' 'E'

Quinary Counters

Extract upper 2 bits

for each digit
��� ��� ��� ��� ���

Only in the most significant digit,

the next value of "100" is "110" (instead of "000")

����������
Concatenate them

to obtain pattern

Fig. 3. Generation of the ev and ev r ROM address.

54 = 625 and 55 = 3,125, respectively. This pipeline proceeds
once in 3 cycles because a counter in the RAMs must be read,
incremented, and written.

The chsq value is calculated in the third section. A counter
value is read from one of the RAMs as ov. The expected value
of the corresponding word and its reciprocal are read from
ROMs as ev and ev r, respectively. The result of calculating
(ov−ev)2×ev r is added to or subtracted from the chsq value,
according to which RAM was read. After the accumulation for
all of the words, the circuit halts and outputs the final chsq
value.

The number of cycles to complete the test in this implemen-
tation is estimated at 774,887. The initialization step will take
3,125 cycles to reset counters in the freq5 RAM. The counting
step will take 768,012 cycles as it requires 3 cycles for each
of 256,004 bytes. The calculation step will take 3,750 cycles
to read counter values in the freq4 and freq5 RAMs. This
means that the proposed implementation does not become a
performance bottleneck. The throughput of a TRNG is usually
much smaller than 2.64 bits/cycle (≃ 256,004 × 8/774,887).

B. Size of RAMs and ROMs

In this section, we describe an estimation of the number of
RAM blocks and an optimization of ROMs to reduce it. The
target FPGA SoC of our implementation, Zynq-7000, has 36-
kbit RAM blocks. A 18-kbit RAM can also be implemented
with a half of a RAM block. We count it as 0.5 RAM blocks.

The byte to letter ROM is not expected to be implemented
with RAM blocks because the size of this ROM is only 768
(= 3× 28) bits. It will be implemented with LUTs.

ap_ufixed<CHSQ_T,CHSQ_I> chsq;
ap_ufixed<EV_T,EV_I> ov, ev;
ap_ufixed<CHSQ_F,0> ev_r;
ap_ufixed<EV_T*2,EV_I*2> diffsq;
ap_ufixed<(EV_T*2)+CHSQ_F,EV_I*2> chsq_inc;

Fig. 4. Definition of fixed-point variables in the C++ code.

ev = evalue[pattern];
ev_r = evalue_rev[pattern];
if (i < 3125) {

ov = freq5[index5++];
} else {

ov = freq4[index4++];
}
ev = (ev > ov) ? ev - ov : ov - ev;
diffsq = ev * ev;
chsq_inc = diffsq * ev_r;

Fig. 5. Calculation of chsq_inc in the C++ code.

The RAMs to count the occurrence frequencies of words
use 2.5 RAM blocks. Since the number of 4-letter and 5-letter
words is 54 = 625 and 55 = 3,125, the number of words of the
freq4 and freq5 RAMs becomes 210 and 212, respectively.
A value of each counter is stored as a 13-bit integer and it
saturates at 212. This saturation does not occur as long as
an overflow of the chsq value (explained in Section III.B) is
avoided. Thus, the freq4 and freq5 RAMs require 0.5 and 2
RAM blocks, respectively.

The address input of the ev and ev r ROMs can be 10
bits wide with a careful encoding of the alphabets. Figure 3
describes how to generate the address input. Along with the
indices of the RAMs (index4 and index5), the current word in
the chsq calculation is managed by a 5-digit quinary counter.
The address input is obtained by concatenating upper two bits
of respective digits. As described in Table I, ‘A’ and ‘E’, ‘B’
and ‘D’ have the same occurrence probability, respectively.
We encode the alphabets in order that these pairs have the
upper two bits in common. This enables to equate alphabets
in each pair in the calculation of occurrence probability of
words. When dealing with 4-letter words, the most significant
digit is set to “110” because the upper two bits of “11” are
not used by any alphabet. As a result, each of these ROMs
is 210 words deep and fit in 0.5 RAM blocks if each of the
words (i.e., ev and ev r) is no more than 18 bits wide.

In summary, we can estimate that our implementation uses
3.5 RAM blocks in total (2.5 for the RAMs of freq4 and
freq5 and 1.0 for the ROMs of ev and ev r), if the ROMs
are kept small enough.

C. Coding in C++

We use the fixed-point arithmetic library of the Vitis HLS
tool (ap_fixed.h), which defines a type for unsigned,
fixed-point numbers as ap_ufixed. It is actually a C++
template that takes two non-negative integers. A W-bit fixed-
point variable with I bits of integer portion can be defined
with the ap_ufixed<W, I> type.

Figure 4 enumerates the definition of fixed-point variables
in our code, while Fig. 5 describes the process of calculating
the value to be incremented to or subtracted from chsq. The
variables diffsq and chsq_inc correspond to (ev − ov)2

and (ev − ov)2 × ev r, respectively. The bit widths of chsq
and ev are defined as constants in a header file. Constants
with the prefix of _T are the total bit width of variables, while
those with _I and _F are the widths of the integer and the
fractional portions, respectively. Since ev r, or a reciprocal of
expected occurrence frequency, is always smaller than 1, its
integer portion is not needed. The bit width of a product is
calculated by the sum of widths of operands.

After that, arithmeric operators can be used as usual, as
described in Fig. 5. The variable pattern is the address of
the ROMs, generated by the process shown in Fig. 3. The
arrays evalue and evalue_rev correspond to the ev and
ev r ROMs, respectively.

V. EVALUATION

A. Methodology

To evaluate a trade-off between the amount of hardware and
computational error, we synthesized the proposed implemen-
tation of the count-the-ones test, using various bit widths of
the fractional portion of fixed-point variables. The synthesis
tools are Vitis HLS 2021.1 (for high level synthesis) and
Vivado 2021.1 (for logic synthesis). The target FPGA SoC
device is XC7Z020-CLG400-1. The target clock frequency is
set to 100 MHz. On exporting the design as an Vivado IP core
using the export_design command, we have the core be
logic synthesized by adding a -flow syn option. The input
random numbers are passed with an AXI-Stream interface,
while the output chsq value is made available as a memory-
mapped register of an AXI-Lite interface.

The width of the fractional portion of the chsq value was
set from 8 to 24 with an interval of 2. The fractional portion
of ev was from 0 to 8 bits wide, also with an interval of
2. The numbers of LUTs, FFs, RAM blocks (BRAMs), and
digital signal processing units (DSPs) required for the core
were recorded.

The dataset of random numbers was obtained from an
existing TRNG [3]. We coded a floating-point version of the
test for reference. Fifty sets of 2-Mbit random numbers that
give chsq values of less than 10,000 in the floating-point
version were selected. The error ratio was calculated with the
following formula:

|chsqI − chsqF |
chsqF

× 100[%], (2)

where chsqI and chsqF are the chsq values in the fixed-point
version and the floating-point version, respectively.

B. Operation of Circuit

According to an estimation from a synthesis report of Vitis
HLS, the synthesized IP core takes 774,907 cycles to complete
the test. The cycle count fluctuated one or two cycles probably
due to optimizations. It was very close to our estimation

Fig. 6. Block diagram of a system with the synthesized IP core.

0.001

0.01

0.1

1

10

100

8 10 12 14 16 18 20 22 24

A
v
er

ag
e

E
rr

o
r

R
at

io
 [

%
]

Fractional portion of chsq [bit]

0 2 4

6 8

Fractional portion

of ev [bit]

Fig. 7. Average error ratio with fixed-point arithmetics.

shown in Section IV.A. This means that our C++ code was
synthesized as we have expected. This also means that the
throughput of the circuit will be 264 Mbit/s (See Section IV.A),
much higher than most of the TRNGs for FPGAs.

To verify the operation of the synthesized IP core, we
constructed a system that includes one of the synthesized
cores. Figure 6 depicts the block diagram of the system. The
upper-right block with a red icon is the synthesized core. The
system uses the direct memory access (DMA) core in two
ways: providing random numbers stored in the main memory
with the synthesized IP core, and storing random numbers
from a TRNG to the main memory. We confirmed that the
same output value as C simulation was obtained in a real
machine.

C. Error Ratio

Figure 7 plots the average error ratio from the floating-point
version. The X-axis represents the bit width of the fractional
portion of the chsq value, while the Y-axis is the average
error ratio with fifty sequences of random numbers. Each line
corresponds to the same width of the fractional portion of the
ev value.

The graph implies that the error comes from truncation of
both values and their effects are almost independent. When
the width of the fractional portion of chsq is increased, the
average error ratio saturates at a certain value, according to the
width of the fractional portion of ev. It is also observed that
0.1% of the error ratio was achieved when the widths were
set to 18 bits for chsq and 4 bits for ev. In Section V.D, we
compare the amount of hardware around this point.

0

1

2

3

4

5

6

7

0

100

200

300

400

500

600

700

8 10 12 14 16 18 20 22 24

#
 o

f
B

R
A

M
s/

D
S

P
s

#
 o

f
L

U
T

s/
F

F
s

Fractional portion of chsq [bit]

LUT FF BRAM DSP

Fig. 8. The number of FPGA elements with various widths of chsq.

D. Amount of Hardware

Figure 8 summarizes the number of FPGA elements (LUTs,
FFs, BRAMs, and DSPs) required for the synthesized IP core.
The X-axis stands for the bit width of the fractional portion
of chsq. The fractional portion of ev was fixed to 4 bits
wide. The numbers of LUTs and FFs are shown in bars and
correspond to the left axis, while BRAM and DSP counts are
shown in lines and correspond to the right axis. Note that
these results include the AXI-Stream and AXI-Lite interfaces,
which approximately corresponds to 50 LUTs and 100 FFs,
in addition to the computation circuit itself (shown in Fig. 2)

The number of RAM blocks was 2.5 in most cases, which
was smaller than our estimation of 3.5 (see Section IV.B).
Vitis HLS also estimated it at 3.5. According to logic synthesis
reports from Vivado, there are two reasons. First, the RAMs
of freq4 and freq5 were optimized to use 2 RAM blocks.
Second, the ROM of ev was not implemented with a RAM
block, but with LUTs. Since we did not give a directive to use
RAM blocks, the tool presumably made the decision to use
LUTs, taking into account the balance of the elements used.
Nevertheless, it was sometimes implemented with a RAM
block, in the case of 12 bits for instance. In this case, the
number of LUTs was decreased by about 160 but the number
of RAM blocks was increased by 0.5. An increase of RAM
blocks in the case of 24 bits was simply because the ROM
did not fit in a single 18-kbit RAM block.

Figure 9 describes the relationship between the precision
of ev and the amount of hardware. The X-axis represents
the width of the fractional portion of ev in this figure. The
fractional portion of chsq was 18 bits wide.

When ev is treated as an integer (i.e., its fractional portion
is 0 bits wide), the number of DSP units was reduced to 2. In
this case, (ov−ev)2 becomes 24 bits wide and the subsequent
multiplication by ev r fits in a single DSP. A DSP unit in
Zynq-7000 FPGA SoC have a 25-bit × 18-bit multiplier. This
changed the balance of the elements used: the ROM of ev
was always implemented with RAM blocks in this case. It
is also observed that the number of LUTs started to increase
rapidly when the width was increased to 6 bits or more. We
think that it comes from the increase of the bit width of the

0

1

2

3

4

5

6

7

8

0

100

200

300

400

500

600

700

800

0 2 4 6 8

#
 o

f
B

R
A

M
s/

D
S

P
s

#
 o

f
L

U
T

s/
F

F
s

Fractional portion of ev [bit]

LUT FF BRAM DSP

Fig. 9. The number of FPGA elements with various widths of ev.

TABLE II
BREAKDOWN OF AMOUNT OF HARDWARE.

resource-saving high-precision
Part LUT FF LUT FF
Total 377 430 607 536
Step 1 50 (13%) 14 (3%) 52 (9%) 14 (3%)
Step 2 152 (40%) 141 (33%) 150 (25%) 141 (26%)
Step 3 117 (31%) 160 (37%) 347 (57%) 266 (50%)
AXI-Lite 31 (8%) 85 (20%) 31 (5%) 85 (16%)
AXI-Stream 21 (6%) 20 (5%) 21 (3%) 20 (4%)
others 6 (2%) 10 (2%) 6 (1%) 10 (2%)

multiplications.

E. Candidate Circuits

According to the evaluation results, we selected two circuits
as candidates for being used in quality control systems for
TRNGs: a high-precision circuit and a resource-saving circuit.
In the high-precision circuit, the widths are set to 22 bits for
chsq and 4 bits for ev. It shows an excellent error ratio of
0.06%. The numbers of LUTs and FFs required are 607 and
536, respectively. The widths of the resource-saving circuit are
18 bits for chsq and 0 bits for ev. If an increased error ratio of
1.48% is acceptable, the amount of hardware can be reduced
to 377 LUTs and 430 FFs with this circuit. On the selection
of the circuits, we first selected the width of fractional portion
of ev according to Fig. 9, which has a greater impact on the
amount of hardware. The width of chsq for each circuit was
then selected from Fig. 7, at the point where the average error
ratio saturates.

Table II compares the breakdown of amount of hardware
between the selected circuits. A number in parentheses indi-
cates the percentage of each module to the total. Steps 1–3
stand for the steps of the algorithm described in Section III.A,
which were synthesized as separated modules. As expected,
the diffrence only appeared in Step 3, the calculation of the
chsq value. The reduction of the number of LUTs there was
mostly due to the replacement of a ROM with a RAM block as
we have described above. The reduction of FFs came from the
reduction of pipeline registers, due to not only the decrease
of the bit width of calculation, but also the decrease of the
number of pipeline stages.

TABLE III
COMPARISON OF FPGA IMPLEMENTATIONS OF RANDOMNESS TESTS.

Authors Test Family LUT FF DSP length [bit]
Santoro et al. [16] Universal [8] Virtex-5 1,634 n/a n/a 2,068,480
Vaskova et al. [18] Bitstream/OPSO/OQSO/DNA [10] Virtex-5 15,375 8,222 n/a 2,097,171
Yang et al. [20] Entropy Estimation [17] Spatran-6 174 81 1 8,192
Gantel et al. [5] Chi-square Kintex-7 274 260 1 512
Gantel et al. [5] Repetition Count [17] Kintex-7 69 110 0 ∼50
Gantel et al. [5] Adaptive Proportion [17] Kintex-7 192 30 0 1,024
This work Count-the-ones [10] Zynq-7000 373 430 2 2,048,032

Finally, we made a comparison of the resource-saving
candidate circuit with other FPGA implementations of ran-
domness tests. Table III summarizes the comparison result.
The rightmost column stands for the length of the input
random numbers in bit. The most important difference of
the proposed implementation is that the amount of hardware
(LUTs and FFs) is much smaller than the past implementations
of complicated tests [16], [18]. They could detect a long-
term defect of random numbers while they required a large
number of logic elements. In contrast, simple tests can be
implementable with hundreds of LUTs and FFs but detect only
a short-term loss of randomness. We successfully implemented
a complicated test with a hardware cost not much different
from simple tests. The cost is not much larger than recent
TRNGs for FPGA [14], either. This makes it easy to integrate
the proposed circuit to quality control systems, which take
both short-term and long-term tendencies of random numbers
into account.

VI. CONCLUSION

We presented an HLS implementation of the count-the-ones
test from the diehard test, for on-line quality control of a
TRNG on an FPGA. We also assessed a trade-off between the
amount of hardware and computational error and proposed
two circuits as candidates for being used in quality control
systems.

We are going to develop an on-line quality control system
using the proposed implementation. If needed, we will imple-
ment other types of randomness tests in a similar way to what
we did in this paper.

ACKNOWLEDGMENT

A part of this study was supported by JSPS Grants-in-Aid
for Scientific Research (KAKENHI) Grant Number 20K11733
and 21K12164.

REFERENCES

[1] L. B. Carreira et al., “Low-Latency Reconfigurable Entropy Digital True
Random Number Generator With Bias Detection and Correction,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 5,
pp. 1562–1575, 2020.

[2] T. Chen et al., “A Lightweight Full Entropy TRNG With On-Chip
Entropy Assurance,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 40, no. 12, pp. 2431–2444, 2021.

[3] N. Fujieda, “On the feasibility of TERO-based true random number
generator on Xilinx FPGAs,” in 30th International Conference on Field
Programmable Logic and Applications, 2020, pp. 103–108.

[4] N. Fujieda and S. Takashima, “An MMCM-based high-speed true
random number generator for Xilinx FPGA,” International Journal of
Networking and Computing, vol. 11, no. 2, pp. 154–171, 2021.

[5] L. Gantel et al., “A FPGA-Based Post-Processing and Validation Plat-
form for Random Number Generators,” in 2020 IEEE International
Parallel and Distributed Processing Symposium Workshops, 2020, pp.
123–126.

[6] H. M. Gonzalez et al., “Dynamic control of entropy and power con-
sumption in TRNGs for IoT applications,” IEICE Electronics Express,
vol. 15, no. 2, pp. 20 171 157:1–20 171 157:11, 2018.

[7] H. Hata and S. Ichikawa, “FPGA implementation of metastability-based
true random number generator,” IEICE Transactions on Information &
Systems, vol. E95-D, no. 2, pp. 426–436, 2012.

[8] W. Killmann and W. Schindler, A proposal for: Functionality classes for
random number generators, version 2.0, Federal Office for Information
Security, 2011.

[9] A. T. Markettos and S. W. Moore, “The Frequency Injection Attack
on Ring-Oscillator-Based True Random Number Generators,” in 11th
Workshop on Cryptographic Hardware and Embedded Systems, 2009,
pp. 317–331.

[10] G. Marsaglia. Diehard battery of tests of randomness (Archived).
[Online]. Available: https://web.archive.org/web/20160125103112/http:
//stat.fsu.edu/pub/diehard/

[11] U. M. Maurer, “A universal statistical test for random bit generators,”
in 10th Annual International Cryptology Conference on Advances in
Cryptology, 1991, pp. 409–420.

[12] FIPS PUB 140–2 Security Requirements for Cryptographic Modules,
National Institute of Standard Technology, 2001.

[13] A. Peetermans et al., “A Highly-Portable True Random Number Gen-
erator based on Coherent Sampling,” in 29th International Conference
on Field Programmable Logic and Applications, 2019, pp. 218–224.

[14] O. Petura et al., “A survey of AIS-20/31 compliant TRNG cores
suitable for FPGA devices,” in 26th International Conference on Field
Programmable Logic and Applications, 2016, pp. 1–10.

[15] A. Rukhin et al., A statistical test suite for random and pseudoran-
dom number generators for cryptographic applications, NIST Special
Publication 800–22, Rev. 1a, 2010.

[16] R. Santoro et al., “Arithmetic operators for on-the-fly evaluation of
TRNGs,” in SPIE Optics + Photonics 2009, 2009, pp. 74 440S:1–
74 440S:12.

[17] M. S. Turan et al., Recommendation for the Entropy Sources Used for
Random Bit Generation, NIST Special Publication 800–90B, Rev. 1,
2018.

[18] A. Vaskova et al., “Accelerating secure circuit design with hardware
implementation of Diehard Battery of tests of randomness,” in IEEE
17th International On-Line Testing Symposium, 2011, pp. 179–181.

[19] Xilinx Inc., Vitis High-Level Synthesis User Guide, UG1399 (v2021.1),
2021.

[20] B. Yang et al., “On-the-fly tests for non-ideal true random number
generators,” in 2015 IEEE International Symposium on Circuits and
Systems, 2015, pp. 2017–2020.

[21] K. Yang et al., “An all-digital edge racing true random number generator
robust against PVT variations,” IEEE Journal of Solid-State Circuits,
vol. 51, no. 4, pp. 1022–1031, 2016.

