
� �
This is the accepted version of the following article: A Python-based evaluation framework for stochastic computing
circuits on FPGA SoC, 9th International Symposium on Computing and Networking Workshops (CANDARW 2021), pp.
81–86 (11/2021), which has been published in final form at https://doi.org/10.1109/CANDARW53999.2021.00021.
The article was presented at 9th International Workshop on Computer Systems and Architectures (CSA-9), a workshop
of CANDAR 2021.
©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works.� �

A Python-based evaluation framework for
stochastic computing circuits on FPGA SoC

Naoki Fujieda†

Department of Electrical and Electronics Engineering, Faculty of Engineering,
Aichi Institute of Technology, Toyota, Aichi, Japan

†nfujieda@aitech.ac.jp

Abstract—Stochastic computing (SC) has drawn renewed at-
tention from researchers as it can minimize amount of hardware
and power consumption. Since a conversion between binary data
and bitstreams is required, an SC circuit cannot be simulated or
run alone and it spends a lot of time and effort to prepare an
evaluation environment. In this paper, we introduce an evaluation
framework for an SC circuit on an FPGA SoC, where the circuit
is easily integrated into Xilinx’s PYNQ platform and its test
program can be written in Python. According to our estimation
based on an evaluation, an SC circuit with about 600 input and
300 output ports is implementable on a PYNQ-Z1, a low-end
development board for the PYNQ platform.

I. INTRODUCTION

Stochastic computing (SC) was first taught by von Neumann
in 1950s and it has drawn renewed attention from researchers
[6]. In SC, the ratio of ‘1’ in a bitstream of a digital signal
is used to represent a number. It is expected to minimize
amount of hardware and power consumption of computation
circuit because various types of computation can be done
with extremely simple components. Major applications of SC
include machine learning [7], [10], [14] and image processing
[1], [9], where large amount of computation is required but
high precision is not necessarily needed.

Although an SC circuit itself might be simple and easily
designed, to evaluate it with logic simulation or on a real
machine, such as a field-programmable gate array (FPGA),
is not a very easy task. Binary input data must be converted
to bitstreams and output bitstreams must be converted back to
binary. This means an SC circuit cannot be simulated or run
alone. It requires some external components, such as stochastic
number generators (SNGs) and counters. There is a domain-
specific design language for SC circuits called BitSAD [4] and
its benchmark applications called BitBench [3]. However, it

only gives an SC circuit from a program code written in Scala
and such external circuits are not included. Also, to measure
the computation error of SC circuit due to its probabilistic
behavior, an appropriate test bench is required. Multiple times
of tests have to be conducted with different seeds of random
numbers. For these reasons, it spends a lot of time and effort
to prepare an evaluation environment for SC circuits.

To deal with this problem, we propose an evaluation frame-
work for SC circuits using an FPGA system-on-chip (SoC).
Its target platform is the PYNQ platform [17] developed by
Xilinx, where an application and a driver for an intellectual
property (IP) core on the FPGA can be written in Python. From
an SC circuit described in Verilog HDL or SystemVerilog, the
framework automatically generates a wrapper circuit and a
Python driver for an IP core, reducing the time and effort to
evaluate the circuit. Note that we DO NOT intend to deploy
the core in ultra low-power applications or to argue that PYNQ
is a desirable platform for them. The generated IP core is
intended to be used in an evaluation purpose only because the
main focus of this research is to make an evaluation of SC
circuits easier.

The rest of this paper is organized as follows. In Section II,
we briefly explain the background of SC. Section III provides
the organization of the framework and the design of its IP
core, along with the explanation of code generator and Python
driver to make use of a user circuit. Section IV presents
some examples of the proposed framework. The amount of
hardware on the FPGA side is evaluated in Section V. Finally,
we conclude the paper in Section VI.



A

B
P

11011011

(pA = 6/8)

01011100

(pB = 4/8)

01011000

(pP = 3/8)

Fig. 1. A simple example of stochastic computing (SC).

II. STOCHASTIC COMPUTING

A. Principles of Stochastic Computing

Figure 1 depicts a simple example of SC. In the most typical
representation (unipolar), a value p in the range [0, 1] is
encoded to a bitstream, where ‘1’s appear in the probability
of p. In the example, the input signals A and B represent the
values of pA = 6/8 and pB = 4/8, respectively. Assuming the
bitstreams are generated independently from each other, the
probability of observing ‘1’ in the both signals is calculated
by pP = pApB = 3/8. This means a multiplication in SC can
be done with a single 2-input AND gate. Similarly, a product
of n inputs can be represented by an n-input AND gate. A
number of operators and functions in SC are examined and
proposed, such as softmax function [15] and univariate radial
basis function [11] in neural networks.

Keeping bitstreams independent from, or uncorrelated to,
each other is an important condition for SC circuits to work
well. If the inputs are highly correlated, an SC component
might express a totally different function from expected. For
example in Fig. 1, if A and B have the maximum positive
correlation, i.e., ‘1’s in the both signals appears at the same
time as often as possible, the corresponding function to the
AND gate becomes min(pA, pB). In contrast, some recent
studies try to manipulate the correlation to construct functions
that would be inefficient in the usual way [9], [16]. Since it
is difficult to calculate the effect of correlation precisely, SC
circuits have to be tested and evaluated enough using actual
bitstreams.

Instead of the unipolar representation, a bipolar representa-
tion is used in the case of dealing with negative numbers.
There, a value v in the range [-1, 1] is mapped to the
probability p = (v + 1)/2. For example, from a signal that is
assigned −2/3 in the bipolar representation, we can observe
‘1’s in the probability of 1/6 = (−2/3 + 1)/2. It is known
that a multiplication in the bipolar SC can be done with an
XNOR gate, instead of an AND gate [6]. A hybrid design that
mixes the unipolar and bipolar signals in the same circuit is
also examined [12].

B. Conversion of Stochastic Numbers

Figure 2 describes typical circuits to perform conversion
between binary numbers and bitstreams, or stochastic numbers
(SNs). A conversion circuit to an SN (Fig. 2 (a)) is often
called a stochastic number generator (SNG). The SNG is
a comparator between a registered binary input (Reg) and
random numbers. A linear feedback shift register (LFSR) is

�

<

LFSR

Reg

S
N

_
O

U
T

B
IN

_
IN

S
E

E
D

(a)

S
N

_
IN

B
IN

_
O

U
T

+

(b)

Fig. 2. Typical circuits to convert (a) from binary numbers to stochastic and
(b) from stochastic numbers to binary.

usually used to generate random numbers. The output signal
becomes ‘1’ when a random number is smaller than the input
number. A new random number is then generated by shuffling
the state of the LFSR. This procedure is repeated l times,
where l is the length of a bitstream.

Although an LFSR is preferred in the SNG because of
its simplicity, any type of random number generator can be
used. It includes a true random number generator [13], which
utilizes an analogue, probabilistic behavior of circuit elements.
For example, Knag et al. [8] presented an SC architecture
where a probabilistic behavior of memristor cells was utilized
for SN generation.

Conversion from an SN to a binary number can be done
with a counter (Fig. 2 (b)). Since the output binary number is
in the range [0, l], the corresponding value in the range [0, 1]
is obtained by a division by l.

C. BitSAD and BitBench

In 2019, Daruwalla et al. presented a domain-specific design
language for SC circuits called BitSAD [4], along with a set
of benchmark applications called BitBench [3]. Since BitSAD
deals with not only SNs but also audio signals coded by
pulse density modulation, they preferred a word bitstream
computing. BitBench includes a variety of least squares solver
kernels and a singular value decomposition kernel as SC
applications.

BitSAD is based on the Scala language, which means that
a designer can write their own SC circuit along with its test
program in Scala. The algorithm can be verified by simply run-
ning it as a Scala program. The circuit is generated as a Verilog
module, which instantiates library modules corresponding to
operators.

In an SC circuit generated by BitSAD, an SN is represented
by two signals with postfixes of p and m. The former
represents a positive value and the latter represents a negative
value. For example, when an SN A has a value of −2/3, the
signal A m has ‘1’s in the probability of 2/3, while the signal
A p is always ‘0.’ We refer to this representation using a pair
of signals as a two-line representation in this paper.

Although BitSAD generates a synthesizable Verilog code,
it does not provide required external circuits for SC circuits,
such as SNGs and counters, which means we cannot test the
generated circuit immediately. The authors of BitSAD later
added a functionality of emulating SC by software [5], which



sn_gen

AXI-Lite I/F

AXI I/F

FIFO

count

user_wrapper

User Circuit

Components of IP Core

PYNQ

Platform

Code

Generator

Hardware

Overlay

Driver

Class

IP Core
Top module

(1)

(1)(1)

(2)

(2)

(3)

(5)

(4)

Fig. 3. Organization and workflow of the proposed framework.

might help designers find a failure of SC circuits due to
correlation. However, they have not presented how to simulate
or run the generated SC circuit, or even whether it works
correctly or not.

III. EVALUATION FRAMEWORK

A. Organization of the framework

Figure 3 depicts the organization and the workflow of
the proposed evaluation framework for SC circuits. A white
box represents a component of the framework. Hardware
components (enclosed by a dotted box) are written in either
Verilog HDL or SystemVerilog, while software components
(i.e., the code generator and the template of driver class) are
written in Python. A light gray box is a component provided
by a designer or generated by CAD tools. A Verilog testbench
is also included, though it is not shown in Fig. 3.

The target of our framework is the PYNQ platform [17],
shown in the dark gray box in Fig. 3. PYNQ is a Python-based
system development platform for Xilinx’s FPGA SoC called
Zynq. There, the FPGA side of the Zynq chip is abstracted as
a hardware overlay, which consists of a programming file (.bit)
and a hardware hand-off file (.hwh). In a Python program, the
FPGA side can be easily programmed from the processor side
(called the processing system), by instantiating an Overlay
class of PYNQ. Also, peripheral circuits in the overlay, packed
as IP cores, can be easily controlled using driver classes
referenced from the Overlay instance.

The workflow of the proposed framework is as follows:
1) From a Verilog HDL or SystemVerilog description of

the user circuit, generate a wrapper circuit and a custom
driver class based on code templates using the code
generator.

2) From the user circuit and hardware components of the
framework, package an IP core using the IP packager
tool of Xilinx Vivado.

3) Create a Vivado project, make a block diagram with a
Zynq processing system and the packaged IP core using
the IP integrator tool, and synthesize the block diagram.

4) Upload the hardware overlay and the driver class to
PYNQ, and then write a test program in Python.

5) Execute the test program on PYNQ. When the hardware
overlay is loaded, the FPGA side will be programmed
automatically.

sn_genAXI-

Lite

I/F
sn_gen

sn_gen

User

Circuit

count

count

count

AXI I/F

user_wrapper

ZYNQ7 Processing System (PS)

GP Port HP Port

FIFOFIFO

Fig. 4. Block diagram of the IP core of the framework.

Once a designer makes a project and a block diagram in
Step 3, they can share them among multiple SC circuits. This
is because the interface of the IP core to the processing system
is always the same, as we will explain later in Section III.B. If
the designer makes another IP core, they will have to change
the referenced IP repository directory. Or, if they modify the
source files of the IP core directly, they will have to upgrade
the core. In the both cases, a new hardware overlay will be
obtained by re-synthesizing the block diagram.

B. Design of IP core

Figure 4 describes the internal block diagram of the IP
core used in the framework. The core is basically composed
of three modules: an AXI-Lite interface (I/F) for control, an
AXI interface for data, and the wrapper circuit (user wrapper).
Interconnect circuits are not shown in the figure for simplicity.
They will be automatically created between interface modules
and ports of the processing system for protocol conversion.

The AXI-Lite interface is connected to a general-purpose
(GP) port of the processing system and receives the length of
bitstreams and pointers of input and output arrays. The input
array is an array of structures, each of which consists of a
binary number and a seed of an LFSR, while the output array
is an array of counter values. All of them are 32-bit integers.
The AXI interface is connected to a high-performance (HP)
port and sends read and write requests of the arrays to the
processing system. The data are stored in FIFOes. The read
data are distributed to SNGs (sn gen). The data to be written
are collected from counters (count) by letting them operate
like a shift register.

The wrapper circuit instantiates SNGs, counters, and the
user circuit and connects them properly. Since the number of
ports and representation of SNs vary with the user circuit,
the numbers and configurations of SNGs and counters are
defined as parameters. Their values are determined by the
code generator, which will be explained in Section III.C. A
configuration for each SNG or counter is given as a two-bit
parameter. Parameters of 00, 01, 10 corresponds to unipolar,



PROD

AVG

A
0

A
1

A
2

A
3

SEL
0

SEL
1

Fig. 5. An SC circuit to calculate the product and the arithmetic mean of
four inputs.

1 module bit_addmul (
2 input logic CLK,
3 input logic [3:0] A,
4 input logic [1:0] SEL,
5 output logic PROD,
6 output logic AVG);
7 ...

Fig. 6. Definition of the module of the SC circuit shown in Fig. 5.

bipolar, and two-line representations, respectively. A designer
can define their own representation using the reserved 11
parameter, by modifying the SNG, the counter, and the code
generator.

C. Code Generator

The code generator first recognizes the appearance (i.e.,
the name of module and the names and widths of ports)
of the top module of the user circuit, which is essential for
instantiation. Clock and reset input ports are recognized (if
exist) separately from the others, in order to let them connect
to the user circuit directly. It also determines the representation
of each SN. If the name of a port has a postfix of b, the
corresponding SNG or counter is configured for the bipolar
representation. If there are two ports with postfixes of p and
m, the corresponding component is configured for the two-

line representation (Section II.C).
The generator then outputs source codes of a wrapper circuit

and a Python driver from templates. It reads the templates one
line at a time. If it is a comment line with a specific keyword,
a code corresponding to the user circuit is output. Otherwise,
the generator outputs that line without modification.

An example SC circuit is shown in Fig. 5. It has a 4-bit input
port A, a 2-bit input port SEL, and 1-bit output ports PROD
and AVG. Figure 6 is the definition of the corresponding
SystemVerilog module. Note that it includes a clock input
for the sake of explanation, even though it is a combinatorial
circuit and a clock input is not needed. When the generator
recognizes this module, it will detect total of 6 bits of input
(except clock) and 2 bits of output. The generated wrapper
circuit will thus include six SNGs and two counters.

[0]

[1]

[2]

[3]

[4]

[5]

srcs

[0]

[1]

[2]

[3]

[0]

[1]

_A

_SEL

dsts

[0]

[1]

_PROD

_AVG

Input Port Class

Input Vector Class

Output Port Class

Output Vector Class

Fig. 7. Organization of I/O class instances corresponding to the SC circuit
shown in Fig. 5.

D. Custom driver class

The framework also provides a custom driver class in
Python, which inherits the default driver of PYNQ, so that
a designer can easily access to the input and output values
of the SC circuit. It has instances of four additional classes:
input port, input vector, output port, and output vector. A port
class corresponds to a single bit of input/output port and has a
value property to read or write the value of the SN. The input
port class additionally has a seed property corresponding to
the seed of LFSR. A vector class contains multiple instances
of a port class and has a values property to access them at
once.

We explain how the driver organizes I/O class instances,
using the example SC circuit (Fig. 5) again. It calculates the
product (PROD) and the arithmetic mean (AVG) of four inputs
A0, A1, A2, and A3, by setting the value of SEL0 and SEL1

to 0.5. Figure 7 depicts the organization of the corresponding
I/O class instances. The driver first makes an instance of port
class for each bit of the ports. It then makes two instances of
the vector classes, srcs and dsts, that contains all of the
input and output port instances, respectively. Finally, it gives
aliases to an port instance or a set of port instances. The name
of alias is a prefix of underscore (_) followed by the name of
the port. As a result, we can read the value of the product
by accessing _PROD.value and read out all of the output
values from dsts.values, for example.

IV. WORKING EXAMPLES

A. Simple SC circuit

As a simple example, we first ran the SC circuit, shown in
Fig. 5, on the proposed framework. Figure 8 is a screenshot
of Jupyter Notebook running on the PYNQ platform. The box
with a label In [4] contains a test program and two lines
in the bottom with a label Out[4] is its outcome.

Since we set {A0, A1, A2, A3} = {0.9, 0.8, 0.7, 0.6} in the
test program, the expected product and arithmetic mean were
0.3024 and 0.75, respectively. The length of bitstreams was
set to 10,000 using the cycle property. The SC circuit was
ran five times. Before running the circuit, the seeds of LFSRs
were reset to random values by calling the resetseeds()



Fig. 8. A test program for the SC circuit shown in Fig. 5 and its execution
result.

Fig. 9. A part of waveform in the logic simulation of the least squares solver
kernel circuit in BitBench.

method. The product and the arithmetic mean for each attempt
were recorded in the individual lists and output in the end.

The average of the resultant products and arithmetic means
of five attempts in Fig. 8 became 0.2994 and 0.7481, respec-
tively. Though some errors due to randomness were observed,
these were similar to the expected values. In this way, we
confirmed the operation of an SC circuit using the proposed
framework. Also, we greatly reduced the time and effort to
prepare the test program.

B. Application in BitBench

Next, we tried to verify the inverse kinematics (IK) variant
of the least squares solver kernel in BitBench [3]. We used
verilog/ls ik top.v file found in the BitBench artifact evalu-
ation dataset [2] as the top module of the user circuit. We
confirmed the same file could be obtained by compiling the
Scala source with BitSAD. Library modules referenced by the
top module were also used. The circuit took two 2×2 matrices

A
0

A
1

A
n-1

P

(a) prod

A

B

C

n/2

n/2

n/2

(b) eprod

Fig. 10. SC circuits used in the evaluation.

(one of them is the identity matrix), two 2 × 1 vectors, and
two scalar parameters and gave a 2× 1 vector X = [x0 x1]

T .
The circuit, however, did not work correctly. Concretely

speaking, the value of x0 was far from the expected value
and x1 became always zero. Figure 9 is a part of the result
of logic simulation conducted to find out the cause of the
incorrect operation.

We confirmed that the input signals were correctly gen-
erated by SNGs. For example, we set {A0, A1, A2, A3} =
{0.7090,−0.2910,−0.2002, 0.5975} in this simulation, which
corresponded to the input matrix A. We could observe that,
after the reset of the circuit was released (at 452 ns), A p[0]
and A p[3] sometimes became ‘1’ while A m[0] and A m[3]
were always ‘0.’ This was an expected behavior of the two-
line representation (see Section II.C) when the corresponding
values (i.e., A0 and A3) are positive. The opposite held true
for A1 and A2.

On the other hand, both X p[1] and X m[1] became
hi-Z and both X p[0] and X m[0] fell into an unknown
value (X) during the reset period (at about 400 ns). After
we carefully inspected the generated circuit, we found that
BitSAD did not properly handle a multiplication by a scalar
of a vector or a matrix and it always generated modules of
matrix multiplication. As a result, the output became a 1× 1
vector instead of 2×1 and x1 became unused. It also caused a
dot-product operation of 1×1 vectors. The dot-product library
module did not support such a case and it referred to non-
existent signals. That was why x0 became unknown.

In fact, our initial motivation for developing the proposed
framework was to evaluate BitBench in a real machine, but it
resulted in finding a bug of BitSAD. Nevertheless, from this
example, we can argue that the proposed framework is also a
useful tool to help inspect problems of SC circuits.

V. EVALUATION

A. Methodology

To evaluate the extendibility of the proposed framework, we
synthesize hardware overlays using SC circuits with various
numbers of input and output ports. We then check post-
implementation reports and record the number of logic el-
ements: look-up tables (LUTs), flip-flops (FFs), and block
RAMs (BRAMs), used in the overlay.

In the evaluation, we use two types of SC circuits named
prod (product) and eprod (element-wise product), as shown
in Fig. 10. The prod circuit is an n-input AND gate, corre-
sponding to a multiplication of n inputs. The eprod circuit is
an (n/2)-bit, 2-input AND gate, corresponding to a element-
wise product of two vectors with a length of n/2. The number



TABLE I
THE NUMBER OF LOGIC ELEMENTS USED IN THE HARDWARE OVERLAY

AND ITS BREAKDOWN.

LUT FF BRAM
IP Core for SC circuit 866 778 2.5

AXI-Lite I/F 84 106 0
AXI I/F 590 349 2.5

wrapper circuit 197 323 0
Interconnect for GP port 285 336 0
Interconnect for HP port 666 764 0

Reset Generator 17 33 0
Total 1,833 1,911 2.5

1,000

2,000

3,000

4,000

5,000

0 8 16 24 32

N
u
m

b
er

 o
f 

L
o
g
ic

 E
le

m
en

ts

Number of Input Ports

LUT (prod) FF (prod)

LUT (eprod) FF (eprod)

1,600

Fig. 11. Relationship between the number of input ports and the number of
logic elements.

of input ports is n in the both circuits, while the number of
output ports is 1 in prod and n/2 in eprod. We set the number
of input ports n to 4, 8, 16, 24, and 32. Note that these user
circuits can be negligible in the evaluation results because they
are extremely small (taking up only 8 LUTs at a maximum).

Hardware overlays are synthesized by Xilinx Vivado 2021.1
with the default options. The target board is a PYNQ-Z1, one
of the low-end development boards for the PYNQ platform,
which includes a Zynq XC7Z020 FPGA SoC.

B. Breakdown of the amount of hardware

Table I summarizes the breakdown of the number of logic
elements used in the overlay with the 4-input prod circuit. Note
that the total number of LUTs is not always the same as the
sum of those for components, because of logic optimization.

The overlay used 1,833 LUTs, 1,911 flip-flops, and 2.5
block RAMs (0.5 means a half of a 36-kb RAM was in use).
More than half of LUTs and flip-flops were used by the AXI
interface and the interconnect for the HP port. They are costs
of voluntarily accessing the memory of the processing system.
All of the BRAMs were used as FIFOes in the AXI interface.

Excluding the wrapper circuit, the number of LUTs and
flip-flops became approximately 1,600. This number did not
vary widely with SC circuit. Considering that an XC7Z020
FPGA SoC has 53,200 LUTs and 106,400 flip-flops, this
is small enough. When we assume that 20% of the rest
of elements are reserved for the user SC circuit, we can
use 41,280 (= (53,200 − 1,600) × 0.8) LUTs and 83,840

(= 106,400−1,600)×0.8) flip-flops for the wrapper excluding
the user circuit.

C. Effect of the number of ports

Figure 11 plots the number of logic elements used by
the evaluated overlays. The X-axis represents the number of
input ports, or n, while the Y-axis stands for the number of
LUTs or flip-flops. The black dotted line corresponds to 1,600,
estimated number of LUTs and flip-flops without the wrapper
circuit. We can observe that the number of logic elements
increases linearly with the number of ports.

When we let the number of input be i and the number of
output ports be o, the formulae L = 50i + 35o and F =
64i + 32o give good approximations of the number of LUTs
and flip-flops for the wrapper circuit, respectively. When o =
i/2, or the same condition as the eprod circuits holds, The
maximum number of input ports, where the wrapper circuit
will fit in the upper limit discussed in Section V.B, was 611
(∼ 41,280/(50 + 35/2)). Therefore, we can estimate that an
SC circuit with about 600 input and 300 output ports can be
implemented on a PYNQ-Z1.

VI. CONCLUSION

This paper presented an evaluation framework for SC cir-
cuits in order to make them be easily evaluated and verified.
We showed its usefulness with some working examples. We
also estimated that a relatively large SC circuit was imple-
mentable on a low-end development board. The source code
of the framework is available at https://github.com/nfproc/
PYNQ-BitPack.

As we are going to design and improve our own SC circuits,
we expect that the proposed framework greatly accelerates our
future studies.

ACKNOWLEDGMENT

A part of this study was supported by the NAGAI Founda-
tion for Science & Technology.

REFERENCES

[1] A. Alaghi et al., “Stochastic Circuits for Real-Time Image-Processing
Applications,” in 50th Annual Design Automation Conference, 2013, pp.
136:1–136:6.

[2] K. Daruwalla et al. BitBench Artifact Evaluation. [Online]. Available:
https://doi.org/10.5281/zenodo.2648959

[3] ——, “BitBench: A Benchmark for Bitstream Computing,” in 20th ACM
SIGPLAN/SIGBED International Conference on Languages, Compilers,
and Tools for Embedded Systems, 2019, pp. 177–187.

[4] ——, “BitSAD: A Domain-Specific Language for Bitstream Comput-
ing,” in Unary Computing Workshop held in conjunction with ISCA
2019, 2019, pp. 2:1–2:5.

[5] ——, “BitSAD v2: Compiler Optimization and Analysis for Bitstream
Computing,” ACM Transactions on Architecture and Code Optimization,
vol. 16, no. 4, pp. 43:1–43:25, 2019.

[6] W. J. Gross and V. C. Gaudet, Eds., Stochastic Computing: Techniques
and Applications. Springer, 2019.

[7] D. Kim et al., “FPGA Implementation of Convolutional Neural Network
Based on Stochastic Computing,” in 2017 International Conference on
Field Programmable Technology, 2017, pp. 287–290.

[8] P. Knag et al., “A Native Stochastic Computing Architecture Enabled
by Memristors,” IEEE Transactions on Nanotechnology, vol. 13, no. 2,
pp. 283–293, 2014.



[9] V. T. Lee et al., “Correlation Manipulating Circuits for Stochastic
Computing,” in 2018 Design, Automation & Test in Europe Conference,
2018, pp. 1417–1422.

[10] B. Li et al., “Neural Network Classifiers Using a Hardware-Based
Approximate Activation Function with a Hybrid Stochastic Multiplier,”
ACM Journal on Emerging Technologies in Computing Systems, vol. 15,
no. 1, pp. 12:1–12:21, 2019.

[11] V.-T. Nguyen et al., “A Compact and Accuracy-Reconfigurable Univari-
ate RBF Kernel Based on Stochastic Logic,” in 2020 IEEE International
Symposium on Circuits and Systems, 2020, pp. 1–5.

[12] K. K. Parhi, “Analysis of Stochastic Logic Circuits in Unipolar, Bipolar
and Hybrid Formats,” in 2017 IEEE International Symposium on Circuits
and Systems, 2017, pp. 1221–1224.

[13] O. Petura et al., “A survey of AIS-20/31 compliant TRNG cores
suitable for FPGA devices,” in 26th International Conference on Field
Programmable Logic and Applications, 2016, pp. 1–10.

[14] A. Ren et al., “SC-DCNN: Highly-Scalable Deep Convolutional Neural
Network using Stochastic Computing,” in 22nd International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2017, pp. 405–418.

[15] S. C. Smithson et al., “Stochastic Computing Can Improve Upon Digital
Spiking Neural Networks,” in 2016 IEEE International Workshop on
Signal Processing Systems, 2016, pp. 309–314.

[16] D. Wu and J. S. Miguel, “In-Stream Stochastic Division and Square
Root via Correlation,” in 56th Annual Design Automation Conference,
2019, pp. 162:1–162:6.

[17] Xilinx Inc. PYNQ: Python Productivity. [Online]. Available: http:
//www.pynq.io/


