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Abstract—A True Random Number Generator (TRNG) using
a pair of Phase-locked Loops (PLLs) or Digital Clock Managers
(DCMs) has an advantage of minimal usage of logic elements of
FPGA. This paper focuses on a new clocking element of Xilinx
FPGAs called mixed-mode clock manager (MMCM) and presents
its effective use for better randomness and higher throughput.
According to an evaluation on an Artix-7 FPGA using 132 sets of
parameters, 89 sets passed AIS-31 Procedure B with the proposed
method, while only 9 sets passed when simply porting an existing
DCM-based method. The average throughput was 1.18 Mbit/s,
which was 5x faster than an existing DCM-based method.

I. INTRODUCTION

In secure computer systems, a true random number gen-
erator (TRNG) is important to obtain unpredictable random
numbers. They are used as, for example, an encryption key
and nonce of challenge-response protocols. A TRNG utilizes
a physical phenomenon as a source of entropy, of which the
AIS-31 standard [5] requires an appropriate stochastic model.

There are some types of TRNGs that are suitable for
FPGA (field programmable gate array) implementations and
compliant with the AIS-31 [10]. They use physical phenomena
of internal logic or complementary elements, while thermal
noise of resisters [16] or transistors [8] is often used in ASIC
(application-specific integrated circuit) implementations. Co-
herent sampling [1], [6], [7] is one of the operating principles
of them.

Coherent sampling-based TRNGs with clocking elements,
such as phase-locked loop (PLL) [2] and digital clock manager
(DCM) [4], have an advantage of being implementable with a
minimal number of logic elements. Coherent sampling requires

two clock signals that have slightly different frequencies.
Instead of using two ring oscillators, they use frequency syn-
thesized signals from one oscillator or an external clock input.
They require two clocking elements but fewer logic elements.
In general, an FPGA-based computer system requires a large
number of logic elements, while most of clocking elements
remain unused. They let precious logic resources use for other
parts of the system.

This research focuses on a new clocking element of Xilinx
FPGAs called MMCM (mixed-mode clock manager) [14]. It
is available for Virtex-6 and 7 series (or newer) FPGAs and
a PLL for these FPGAs is its subset [14]. It enables finer
multiplying and dividing factors to be set as parameters than
earlier DCMs. Since existing methods targeted Intel (Altera)
FPGAs or earlier Xilinx FPGAs (such as Virtex-5 [3], [4]), it
is not obvious whether they can be adopted to recent Xilinx
FPGAs in the same manner.

In this paper, we propose an effective use of MMCMs for
coherent sampling-based TRNG. In particular, we present a
novel way of selecting parameter sets of MMCMs that maxi-
mize entropy and bit rate of generation. We first demonstrate
that simply porting an existing DCM-based TRNG [4] does not
offer enough entropy. We then show that the proposed method
gives random number sequences that pass the statistical tests
of AIS-31 in most cases. The most important contribution of
this paper is to make TRNGs with clocking elements available
for recent Xilinx FPGAs.

The organization of this paper is as follows. A brief
explanation of the basis of our research, coherent sampling
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Fig. 1. Example of coherent sampling where the frequency ratio is 7 : 6.

and MMCM, is presented in Section II. Section III describes
porting of the existing DCM-based method, while Section IV
presents the proposed selection of parameter sets of MMCMs.
The quality of random numbers, the generation bit rate, and the
amount of hardware of the MMCM-based TRNG are evaluated
in Section V. We conclude the paper in Section VI.

II. BACKGROUND

A. Principle of Coherent Sampling

Figure 1 depicts the operating principle of coherent sam-
pling with an example. It requires two clock signals that have
slightly different frequencies. These signals, ClkA and ClkB,
are given to the data and clock input ports of a D flip-flop
(D-FF), respectively. For ease of explanation, we assume that
the ratio of the frequencies is fA : fB = (N + 1) : N . The
example of Fig. 1 shows the case of the ratio of 7 : 6. The
periods of the respective clocks are denoted by tA and tB .

Suppose that the both clock signals rise at time zero. The
time when the both clocks rise at the same time again will be
tQ = NtB . As ClkB goes slightly slower than ClkA, it can
effectively capture a waveform of a single cycle of ClkA with
N samples. As a result, the output of the D-FF becomes a
series of consecutive ‘1’s and consecutive ‘0’s. The expected
value of the number of consecutive ‘1’s is N/2 (if the duty
cycle of ClkA is 1/2).

TRNGs utilize the jitter of these clock signals. When the
vicinity of edge of ClkA (such as Q0 and Q3 in Fig. 1) is
captured, the output of the D-FF may vary with slight time
jitter. Also, when the both edges come quite close, D-FF may
fall into a metastable state due to timing violation, which
results in random output. These phenomena make the actual
number of consecutive ‘1’s uncertain. Its LSB (least significant
bit) can be used as a source of entropy, which is obtained by
a T flip-flop (a D-FF and an XOR gate). To harvest enough
entropy, the jitter σJ should be sufficiently larger than the
difference of the periods td = tB − tA = tA/N . Without
considering the effect of metastability, the standard deviation
of the number of ‘1’s is proportional to σJ/td.

B. Coherent Sampling-based TRNG

One of the methods to obtain clock signals for coherent
sampling-based TRNGs is to use two ring oscillators [6], [9],
[12]. Even though the oscillators have the same topology,
their oscillation frequencies may slightly differ because of
manufacturing variation. If we got a proper period difference
td, we would generate high-quality random numbers at a fast
rate (in an order of Mbit/s). However, improper td results in
the lack of entropy (too large td), or reduction of the bit rate
of generation (too small td). It was a serious problem for
practical use to properly adjust td. A solution for this problem
has recently been proposed, which uses route-selectable ring
oscillators [9]. To improve the generation bit rate, a mutual
sampling method [12] was proposed, which captured ClkB by
ClkA in addition to capturing ClkA by ClkB. It was reported,
however, that the quality of random numbers was degraded
due to the correlation among the output bits [12].

Another method for clock signals is to utilize clocking
elements such as PLLs [2] and DCMs [4]. Since factors of
multiplication and division can be set as parameters, it is easy
to get a proper frequency ratio. When an external clock source
is used, no ring oscillators are required. Even when clocks
must be generated internally (i.e. an external clock source
is unreliable), only one ring oscillator is required. This type
of TRNGs have an advantage of minimizing the number of
required logic elements in exchange for two additional PLLs
or DCMs. A shortcoming of this method is relatively large
power comsumption of clocking elements.

Our research is based on a DCM-based TRNG proposed
by Johnson et al. [4], whose target is Xilinx Virtex-5. The
parameters of Virtex-5 DCM are multiplier M and divisor
D. They both must be integer and meet 2 ≤ M ≤ 33 and
1 ≤ D ≤ 32. Proper range of N is 400 ≤ N ≤ 1000
(i.e. tA/400 ≥ td ≥ tA/1000) [4]. They presented 23 sets
of parameters that meets these conditions [4]. For example,
from an input clock of fIN = 100 MHz, they generated ClkA
of (15/31)fIN ∼ 48.39 MHz and ClkB of (14/29)fIN ∼
48.28 MHz. In this case, the frequency ratio is 435 : 434
(i.e. N = 434) and the expected value of the number of
‘1’s is 217. The numbers of ‘1’s are obtained at the rate of
48.28/434 ≃ 0.111 Msample/s. In the DCM-based TRNG,
three LSBs of the number of ‘1’s are extracted and the
generated bitstring is post-processed by the von Neumann
Corrector [13]. Its bit rate of generation is, theoretically,
0.111 × 3 × 1/4 ≃ 0.083 Mbit/s. Although this rate varies
with parameters, the actual rate was 0.210 Mbit/s on average
according to an additional evaluation with various parameters
[3]. In this paper, in consideration of a requirement of AIS-31
[5] for a random bitstring without post-processing, only one
LSB of the number of ‘1’s is extracted and post-processing is
not applied unless explicitly stated.

There are two methods to deal with the number of ‘1’s: the
number of consecutive ‘1’s [7] and the sum of the number
of ‘1’s in N samples [1]. When using two ring oscillators,
the latter method is not available because the frequency
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ratio cannot be exactly determined. With clocking elements,
the both methods can be used. The DCM-based TRNG by
Johnson et al. adopted the former method [4]. The former
method detects the falling edge of output of the D-FF, instead
of counting the number of samples, which makes hardware
simpler. However, since sampling the vicinity of edge happens
consecutively, ‘0’s (’1’s) may appear in consecutive ‘1’s (‘0’s).
When counting the number of consecutive ‘1’s in the former
method, this causes quite small counter values, which have
smaller entropy than counter values near the expected value
[3]. This research adopts the latter method to avoid such a
negative effect.

C. Mixed-mode Clock Manager

Figure 2 abstracts the operation of the mixed-mode clock
manager (MMCM) [14]. Functions unrelated to this research
are omitted from this figure. The input clock of frequency of
fIN is first divided by D, and then passed phase frequency
detector (PFD), charge pump (CP), loop filter (LF), and
voltage-controlled oscillator (VCO). The input frequency of
the PFD fPFD is

fPFD =
1

D
fIN . (1)

The output of the VCO is fed back to the PFD after divided
by M . Since this feedback signal has the same frequency as
fPFD, the output frequency of the VCO fV CO becomes

fV CO = M · fPFD =
M

D
fIN . (2)

The output of the MMCM is obtained by dividing the VCO
output by Q, whose frequency fOUT is

fOUT =
M

D ·Q
fIN . (3)

The parameters of the MMCM, D, M , and Q, have the
following constraints:

1 ≤ D ≤ 106, (4)
2 ≤ M ≤ 64, (5)
1 ≤ Q ≤ 128. (6)

D must be integer, while M and Q can be integer or fraction
with 1/8 interval. These parameters enable setting of the output
frequency to be finer than the earlier DCM.

TABLE I
PARAMETERS OF MMCM TO SIMPLY PORT THE DCM-BASED TRNG [4].

ID Target MA DA QA MB DB QB

J01 DCM 15 31 - 14 29 -
MMCM 7.50 1 15.50 7.00 1 14.50

J02 DCM 21 22 - 20 21 -
MMCM 10.50 1 11.00 10.00 1 10.50

J22 DCM 30 31 - 29 30 -
MMCM 7.50 1 7.75 7.25 1 7.50

J23 DCM 31 32 - 30 31 -
MMCM 7.75 1 8.00 7.50 1 7.75

These frequencies have constraints due to the characteristics
of the PFD and the VCO. They are slightly different with
FPGA family and speed grade. The target FPGA of our eval-
uation, Artix-7 of speed grade -1, has the following constraints
[15]:

10 ≤ fPFD ≤ 450 [MHz], (7)
600 ≤ fV CO ≤ 1200 [MHz], (8)
4.68 ≤ fOUT ≤ 800 [MHz]. (9)

The input frequency is set to fIN = 100 MHz in this research.
According to Eqs. (7) and (8) for D and M/D, respectively,
the effective constraints of the parameters are as follows:

1 ≤ D ≤ 10, (10)

6 ≤ M

D
≤ 12. (11)

In addition, the MMCM offers the power down mode [14]
to save power consumption when it is not in use. Although it
might be a solution of the shortcomings of PLL/DCM-based
TRNGs referred to in Section II.B, we do not consider it in
this paper.

III. PORTING OF DCM-BASED TRNG

All of our evaluations in this paper use a Digilent Arty
FPGA board, which includes an Artix XC7A35T FPGA.
Circuits are synthesized by Vivado 2019.2 with the default
options unless explicitly stated. The number of ‘1’s or its LSB
is measured by a counter and sent to a PC via 3-Mbps UART.
The programming file is generated for each set of parameters
of MMCMs; dynamic reconfiguration of the parameters is left
for future work.

In this section, we simply port the DCM-based TRNG by
Johnson et al. [4] to FPGAs with MMCMs. Because of the
constraints on M and D, or Eqs. (10) and (11), the existing
DCM parameters cannot be directly adopted. To make the
parameters comply with MMCMs, Q is used as a dividing
factor instead of D, and then both M and Q are divided by
two (if M ≤ 24) or four (if M > 24). Table I shows a part
of the parameter sets obtained from this strategy. We assigned
numbers of J01, J02, ..., and J23 to the parameter sets of
the DCM-based TRNG [4]. The parameters MA, DA, QA are
for ClkA and MB , DB , QB are for ClkB. We measured 107

counter values (the number of ‘1’s for each N samples) for
each parameter set and plotted their distribution.
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Fig. 3. Distribution of counter values using the MMCM parameters shown
in Table I.

TABLE II
FREQUENCY AND PEAK-TO-PEAK JITTER OF THE OUTPUT OF MMCM.

M D Q Freq. [MHz] Jitter [ps]
7.75 1 8.00

96.875

141.837
15.50 2 8.00 184.566
23.25 3 8.00 229.787
31.00 4 8.00 273.577
38.75 5 8.00 305.392
46.50 6 8.00 343.210
54.25 7 8.00 383.515
62.00 8 8.00 427.425

Figure 3 depicts the distributions of counter values with
J01 and J23 parameter sets. The X-axis represents the counter
value and the Y-axis represents the occurrence frequency for
each value. Gray vertical lines mean the expect value of the
counter, N/2. The variance of the counter values was much
smaller than the results of the previous experiments with
Virtex-5 DCMs [3]. In particular with J01 parameter set, 98%
of the values were the same: 216. As we will evaluate in more
detail in Section V, TRNGs constructed from these parameters
do not give enough entropy and, as a result, they fail statistical
tests in most cases. It might be because logic and clocking
elements of the newer FPGAs become more fault tolerant:
jitter of MMCMs, setup time, and hold time of D-FFs might
get smaller. Also, their bit rate of generation are about 0.1
Mbit/s, which is an order of magnitude slower than other type
of TRNGs suitable for FPGAs [10]. The conclusion of this
section is that a simple porting of the DCM-based TRNG is
not enough in either randomness or throughput.

IV. ENHANCED PARAMETER SELECTION

A. Method for Larger Entropy

As we have overviewed in Section II.A, there are two ways
to increase the variance of the number of ‘1’s: decreasing
the difference of the periods td or increase the jitter σJ .
Decreasing the period difference should be avoided because it
has a tradeoff with the generation bit rate. Instead, we adjust
the parameters in order to increase the jitter while keeping the
frequency unchanged.

TABLE III
PARAMETERS OF MMCM TO OBTAIN LARGER JITTER.

ID Method MA DA QA MB DB QB

J01 NM 7.50 1 15.50 7.00 1 14.50
JT 60.00 8 15.50 63.00 9 14.50

J02 NM 10.50 1 11.00 10.00 1 10.50
JT 63.00 6 11.00 60.00 6 10.50

J22 NM 7.50 1 7.75 7.25 1 7.50
JT 60.00 8 7.75 58.00 8 7.50

J23 NM 7.75 1 8.00 7.50 1 7.75
JT 62.00 8 8.00 60.00 8 7.75
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Fig. 4. Distribution of counter values using the MMCM parameters shown
in Table III.

Concretely speaking, we multiply both M and D by the
same integer. When multiplying and dividing factors are large,
the effect of internal noise becomes large and the jitter
becomes increased. For example, Tab. II summarizes the peak-
to-peak jitter of ClkA of J23 parameter set, when M and D
are multiplied by 2, 3, ..., and 8. These values can be found
from the clocking wizard of Vivado [14]. The worst case
jitter becomes three times larger. The maximum multiplier,
say Dmax, is constrained by Eq. (5) as follows:

Dmax =

⌊
64

M

⌋
, (12)

where ⌊x⌋ is the maximum integer that is not more than
x. Since M/D remains unchanged, no additional constraints
come from Eq. (11).

Table III illustrates some parameter sets modified by the
above strategy. The method to obtain parameter sets shown
in Section III is represented as NM (Normal). The method
proposed here is represented as JT (Jittery). Both M and D
are multiplied by Dmax to maximize the jitter while Q is
kept unchanged. This modification is applied to both ClkA
and ClkB.

Figure 4 the distribution of counter values where the JT
method is applied. Note that the scale of the Y-axis is not the
same as Fig. 3. The standard deviation of the counter values
became 10 times and 4 times larger then the NM method
with J01 and J23 parameter sets, respectively. Considering the
effect of quantization (that counter values must be integer),
this result basically matches the increase of jitter.
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TABLE IV
PARAMETERS OF MMCM TO OBTAIN HIGHER THROUGHPUT.

ID Method MA DA QA MB DB QB

J01 JT 60.00 8 15.50 63.00 9 14.50
CB 60.00 8 7.75 63.00 9 14.50

J02 JT 63.00 6 11.00 60.00 6 10.50
CB 63.00 6 5.50 60.00 6 10.50

J21 JT 58.00 8 7.50 63.00 9 7.25
CB 58.00 8 3.75 63.00 9 7.25

J23 JT 62.00 8 8.00 60.00 8 7.75
CB 62.00 8 4.00 60.00 8 7.75

* J22 is not available because its N is odd.

B. Method for Higher Throughput

To increase the generation bit rate, we consider doubling
the frequency of ClkA and halving the number of samples per
count (N ). Figure 5 illustrates this idea by a similar example
to Fig. 1, where the frequency ratio is changed from 7 : 6
to 14 : 6. From the principle of coherent sampling, in this
case the waveform of two cycles of ClkA is captured by N
samples. If each of the counter values of the first half (Q0, Q1,
and Q2 in the example) and the last half (Q3, Q4, and Q5) is
counted independently, the generation bit rate can be doubled
while avoiding the effect on the entropy (the variance of the
counter values). From a lesson from mutual sampling [12],
the count should be independent from each other; otherwise,
unwanted correlation may occur. In this method, this means
that N must be an even number to sample the logically same
waveform between the first and the last halves.

This idea can be extended to multiplier of arbitrary natural
number. The multiplier, denoted as K, has the following
constraints: Q/K must be a permitted value as a parameter of
Q and N must be divisible by K.

Table IV shows some parameter sets to double the frequency
of ClkA while keeping the JT method applied. We denote this
combination of the proposed methods as CB (Combined). We
applied the CB method to 13 (out of 23) parameter sets where
N is even. Only QA is halved and the other parameters are
left unchanged.

According to an evaluation, the distribution of the counter
values was almost unchanged. The generation bit rate was

TABLE V
PARAMETERS OF MMCM THAT CAN MAXIMIZE JITTER AND

THROUGHPUT.

ID Method MA DA QA MB DB QB

NM 6.000 1 7.000 7.375 1 8.625
N001 JT 60.000 10 7.000 59.000 8 8.625

CB 60.000 10 1.000 59.000 8 8.625
NM 6.375 1 7.000 6.250 1 6.875

N002 JT 63.750 10 7.000 62.500 10 6.875
CB 63.750 10 1.000 62.500 10 6.875
NM 6.375 1 7.000 7.500 1 8.250

N003 JT 63.750 10 7.000 60.000 8 8.250
CB 63.750 10 1.000 60.000 8 8.250
NM 8.000 1 15.000 6.125 1 11.500

N130 JT 64.000 8 15.000 61.250 10 11.500
CB 64.000 8 1.000 61.250 10 11.500
NM 8.000 1 15.000 7.125 1 13.375

N131 JT 64.000 8 15.000 57.000 8 13.375
CB 64.000 8 1.000 57.000 8 13.375
NM 8.000 1 15.000 7.250 1 13.625

N132 JT 64.000 8 15.000 58.000 8 13.625
CB 64.000 8 1.000 58.000 8 13.625

exactly doubled because the circuit to count the number of
samples is deterministic. We will conduct a detailed evaluation
in Section V.

C. Selection Strategy

Based on the examinations shown in Section IV.A and
Section IV.B, we consider selection of parameter sets in order
to maximize the effectiveness of the proposed CB method.
First, to maximize the generation bit rate,

QA ∈ N (13)

in the NM and JT methods and the multiplier K = QA. This
means QA = 1 in the CB method. From the constraints of the
frequencies of the VCO and the output, (8), (9), the range of
MA becomes

6 ≤ MA ≤ 8. (14)

As a result from Eqs. (12) and (14), DA in the JT and CB
methods becomes either 8, 9, or 10, which maximizes the jitter.
For ClkB, although arbitrary parameters can be set as long as
Eq. (11) is met, we constrain the range of MB as

6 ≤ MB ≤ 8, (15)

to make DB be also either 8, 9, or 10. Finally, parameters
that meets constraints on the output frequency are selected:
the integer ratio of the frequencies is (N+1) : N , 400 ≤ N ≤
1000 [4], and N is divisible by K. The number of possible sets
of parameters is at most an order of hundreds of thousands.
We conducted full search to find promising parameter sets.

We found 132 sets of parameters in a range of output
frequency between 50 and 100 MHz. Table V summarizes a
part of them. We assigned numbers of N001, N002, ..., N132
to these parameter sets. There are two parameter sets which
have also enumerated in the DCM-based TRNG [4]: N009 and
N029 are identical to J19 and J23 (except for the CB method),
respectively.



TABLE VI
MIN-ENTROPY OF GENERATED RANDOM BITSTRINGS.

ID NM JT CB
J01 0.0294 0.9964 0.7988
J02 0.9254 0.6097 0.6157
J03 0.2614 0.6742 -
J04 0.4915 0.5647 -
J05 0.9117 0.9191 0.7953
J06 0.4927 0.7687 -
J07 0.9800 0.6926 -
J08 0.4113 0.7566 -
J09 0.6232 0.6316 0.6782
J10 0.7167 0.8034 -
J11 0.9621 0.6798 0.6442
J12 0.3369 0.8610 0.8002
J13 0.7646 0.8534 -
J14 0.9749 0.6827 0.6623
J15 0.9762 0.5669 0.7551
J16 0.4921 0.6435 0.8879
J17 0.8709 0.9839 0.9935
J18 0.9895 0.7425 -
J19 0.7684 0.9936 1.0000
J20 0.8910 0.9917 -
J21 0.8384 0.8969 0.8906
J22 0.6670 0.7579 -
J23 0.9863 0.9963 0.9959

Avg. 0.7114 0.7855 0.8090
(0.7458) (0.8047)

V. EVALUATION

A. Min-entropy

In this section, we evaluate the effect of the proposed pa-
rameter selection on the randomness, the bit rate of generation,
and the amount of hardware of an MMCM-based TRNG.
We first evaluate the entropy based on the parameter sets
from the DCM-based TRNG (i.e. J01–J23). We measured
the occurrence frequency of the LSB of 107 counter values.
We calculated the min-entropy of the sequence of LSBs as
H∞ = − log2{max(p0, p1))}, where the occurrence frequen-
cies of the LSB of ‘0’ and ‘1’ are denoted as p0 and p1,
respectively.

Table VI enumerates the calculated min-entropy. The row
Avg. corresponds to the arithmetic mean of the evaluated sets.
The arithmetic mean of the 13 sets to which the CB method
is applicable is noted in parentheses. The minimum value for
each method is shown in boldface type. The results indicates
that the min-entropy is basically increased by applying the JT
method. In particular, any case that only one counter value
frequently appeared, as shown in Fig. 3, were not observed
in the JT and CB methods. No significant differences were
observed between JT and CB.

B. AIS-31 Statistical Tests

We then evaluate the quality of random bitstrings, generated
by concatenating the LSBs of the counters, using AIS-31 [5]
Procedure B statistical test suite. We used all of the 132
parameter sets found in Section IV.C. This test assumes that
the input bitstring is no less than 7 Mbit long and not post-
processed. If the decision is not reliable (i.e. failing in only
one of the tests), the tests are conducted again with another

TABLE VII
GROUPING OF THE PARAMETER SETS.

Name Condition # of Sets
A 400 ≤ N < 500 35
B 500 ≤ N < 600 32
C 600 ≤ N < 700 22
D 700 ≤ N < 800 17
E 800 ≤ N < 900 14
F 900 ≤ N ≤ 1000 12
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bitstring. We thus generated 16 Mbits of bitstring for each
parameter set. We also calculated the generation bit rate by
measuring the time to obtain the bitstring.

The number of samples per count, N , affects the tradeoff
between the generation bit rate and the quality of random
numbers. We grouped the parameter sets according to N as
shown in Tab. VII.

Figure 6 summarizes the result of the statistical tests, while
Fig. 7 plots the average of generation bit rate. The X-axis
represents a kind of method and a group of parameter sets,
while Y-axis is the proportion of sets passed or failed (Fig.
6) or the generation bit rate (Fig. 7). Only 9 sets (out of
132) passed when the existing method is simply ported (NM),
while 83 sets and 89 sets passed in JT and CB, respectively.
An expected usage in actual applications is to find an appro-
priate parameter set through testing some possible sets using



TABLE VIII
RESULT OF THE NIST SP 800-22 TEST SUITE. A SIMPLE

POST-PROCESSING WITH A 4-BIT LFSR WAS APPLIED.

name p-value proportion
Frequency 0.37287 99.35%

BlockFrequency 0.72770 98.97%
CumulativeSumsUp 0.85956 99.35%

CumulativeSumsDown 0.38881 99.44%
Runs 0.05050 98.97%

LongestRun 0.21278 99.25%
Rank 0.24976 98.97%
FFT 0.82609 99.16%

NonOverlappingTemplate 0.16313 99.00%
OverlappingTemplate 0.06071 98.60%

Universal 0.02751 98.79%
ApproximateEntropy 0.60990 98.97%
RandomExcursions 0.97985 98.98%

RandomExcursionsVariant 0.01551 99.36%
Serial1 0.93685 98.70%
Serial2 0.57125 98.60%

LinearComplexity 0.01405 99.07%

dynamic reconfiguration. Increase of the number of passing
parameter sets means the reduction of the time spent for such
an advance preparation.

Regarding the generation bit rate, CB achieved 1.18 Mbit/s
on average while both NM and JT was 0.118 Mbit/s. This
means that the proposed TRNG was ten times faster than the
simple porting of the existing method by Johnson et al. [4].
Also, it was even five times faster than their implementation
on a Virtex-5 FPGA [3]. In particular, 1.54 Mbit/s of gen-
eration bit rate was achieved with Group A, the group with
the smallest N . This result is comparable with other kinds
of TRNGs [10]. Any significant difference in the result of
statistical tests was not observed among the groups. In actual
applications, it may be reasonable to try parameter with small
N at first. Parameter sets with smaller N might still have
sufficient randomness, though we leave it for future work.

C. NIST SP 800-22 Test Suite

We conduct a more detailed statistical test, NIST SP 800-
22 test suite [11], to random numbers generated by the
proposed method with a simple post-processing. We chose
N029 parameter set (basically equivalent to J23) with the CB
method. As a post-processing method, the random bitstring
was XOR-ed with an output sequence of 4-bit linear feedback
shift register (LFSR) by software. This corresponds to a quite
simple debiasing. As recommended in AIS-31 [5], we obtained
1,073 1-Mbit bitstrings and conducted the tests to each of
them. The generation bit rate of the bitstrings was 0.808
Mbit/s.

Table VIII summarizes the result of the NIST test suite. For
each test, a p-value and the proportion of passed bitstrings are
shown. The test is considered as pass if the p-value is no less
than 10−4 and the proportion is within 3σ range from 99%.
The post-processed bitstrings passed the NIST test suite, for
all of the tests meets these conditions. Although the hardware
for post-processing is not included in the following evaluation
in Section V.D, it will be almost negligible.

TABLE IX
NUMBER OF LOGIC ELEMENTS FOR TRNG.

Element NM JT CB
LUT 19 19 17

D Flip-flop 18 18 18

D. Amount of Hardware

Finally, we evaluate the amount of hardware after synthe-
sized, placed and routed. In the evaluated circuit, only the LSB
of the number of ‘1’s is counted (by a T flip-flop), instead
of the whole number (by a counter). A circuit for UART
communication is not included. To avoid packing with other
circuits, we add a -flatten_hierarchy none synthesis
option. We used the N029 parameter set in the same way as
Section V.C.

Table IX shows the summary of the implementation results.
The number of required LUTs (look-up tables) or flip-flops
was comparable to the DCM-based TRNG [4]. The number
of LUTs was reduced only in the CB method because the
number of samples per count was reduced from N to N/K.
The bit width of the counter can be further reduced if the use
of only the CB method is supposed.

VI. CONCLUSION

In this paper, we proposed a novel method of parameter
selection of MMCMs to apply a coherent sampling-based
TRNG with clocking elements to recent Xilinx FPGAs. The
number of parameter sets that pass the AIS-31 Procedure
B statistical tests became about 10 times larger than simple
porting of the existing method. The bit rate of generation also
became 10 times larger than the simple porting and 5 times
larger than an implementation on an earlier FPGA.

As the configurability of the parameters is important for
real applications, we are going to integrate our MMCM-based
TRNG into a system, in order that an appropriate parameter
could be set automatically.
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