
� �
This is the accepted version of the following article: Naoki Fujieda: On the feasibility of TERO-based true random number
generator on Xilinx FPGAs, 30th International Conference on Field-Programmable Logic and Applications (FPL 2020),
pp. 103–108 (08/2020), which has been published in final form at https://doi.org/10.1109/FPL50879.2020.00027.
c⃝2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works.� �

On the feasibility of TERO-based true random
number generator on Xilinx FPGAs

Naoki Fujieda
Department of Electrical and Electronics Engineering, Faculty of Engineering,

Aichi Institute of Technology, Toyota, Aichi, Japan
nfujieda@aitech.ac.jp

Abstract—A True Random Number Generator (TRNG) is
an essential component for security applications of FPGAs. Its
requirements include small logic area, high throughput, sufficient
randomness backed with a mathematical model, and feasibility
— ease of implementation. This paper focuses on TRNGs based
on a Transition Effect Ring Oscillator (TERO) and presents a
three-path configurable TERO (TC-TERO), an improved imple-
mentation of TERO that achieves high feasibility with a minimal
amount of hardware. According to the evaluation with a Xilinx
Artix-7 FPGA, a TC-TERO with a 20-bit configurable parameter
only required 40 LUTs. By selecting one of the promising
parameters, the proposed TRNG passed AIS-31 Procedure A
without post-processing and NIST SP 800-22 with a simple
debiasing.

Index Terms—Random number generation, Field pro-
grammable gate arrays, Transition effect ring oscillator, AIS-31

I. INTRODUCTION

A True Random Number Generator (TRNG) is an essential
component for security applications. It generates a sequence
of random numbers, which is typically used as an encryption
key and nonce of challenge-response protocols, with various
kinds of entropy sources. When implementing a TRNG on
Field Programmable Gate Arrays (FPGAs), it is desirable to
utilize their own logic elements as an entropy source, rather
than external resources such as flash memory cells [13].

Major requirements for TRNGs on FPGAs are fourfold:
small logic area, high throughput, sufficient randomness
backed with a mathematical model, and feasibility. Logic
area is quantified by the number of required logic elements,
while throughput means the bit rate of generation. These two
features are strongly related to power and energy consumption
and comprehensively compared by an area-delay product, the
product of the area and the inverse of the throughput.

To guarantee the safety, recent TRNGs have been required
to have their own mathematical models that support their

randomness. Well-known test suites such as NIST SP 800-
22 [14] only assure that there are no flaws in the statistical
properties of the generated random numbers. The AIS-31
standard [7], proposed by the Federal Office for Information
Security in Germany, requires an evidence that a random
number sequence, obtained from physical noise source and
not post-processed, has sufficient entropy. A 2016 survey [12]
enumerated TRNGs for FPGA devices that complied with this
standard.

Feasibility, or ease of implementation, is also an important
property for practical TRNGs. Even if logic elements in a
circuit block are placed in the same way, its characteristics
may vary due to manufacturing variation. TRNGs should be
designed to harvest sufficient entropy regardless of them. At
least, they should be independent from origin of placement.
If this condition is met, we can use the same programming
file for all devices with the same part number. Otherwise,
we would have to search for a preferable position per device
through a repetition of logic synthesis. In the survey [12], this
is the criterion that distinguishes score of 2 or more from 1 in
feasibility. One solution is to make a TRNG configurable and
give a proper parameter to it. It is more preferable to have a
mechanism to find a parameter automatically.

In this paper, we focus on TRNGs based on the Transition
Effect Ring Oscillator (TERO) [2], [15], which is one of
the AIS-31 compliant TRNGs for FPGAs [12]. TERO-based
TRNGs have small logic area and high throughput, as well as
ones based on the Coherent Sampling Ring Oscillator (COSO)
[1], [8], [9]. A disadvantage of TERO is that its characteristics
are strongly dependent on origin of placement. Recently, a
mechanism to make a COSO-based TRNG configurable has
been proposed [11]. Based on knowledge on this mechanism
and TERO, we present a highly feasible TERO-based TRNGs
on Xilinx FPGAs.

QDRO-A Q

OE

Counter

CNT

OE

RO-B
RST

ClkB

ClkA

Time 0 tA tB (N + 1) tA = N tB

td

ClkA

ClkB

Fig. 1. Architecture and working principle of the COSO-based TRNG.

The contributions of this paper are as follows:
• We present an implementation methodology of the

TERO-based TRNG that takes its stochastic model [2]
into account and avoids unwanted behavior.

• We propose a Three-path Configurable Ring Oscillator
(TC-RO), based on the existing Configurable Ring Os-
cillator (C-RO) [11], that greatly reduce the number of
required logic elements.

• We demonstrate that a TRNG that meets all the require-
ments — small logic area, high throughput, sufficient ran-
domness, and feasibility — can be realized by applying
TC-RO to the TERO-based TRNG (i.e. TC-TERO).

We describe them in Sections III, IV, and V, respectively.

II. EXISTING TRNG CORES

In this section, we outline the organization and the operating
principle of existing TRNG circuits, based on COSO (Coher-
ent Sampling Ring Oscillator) and TERO (Transition Effect
Ring Oscillator).

A. Coherent Sampling Ring Oscillator

Figure 1 depicts the architecture and the operating principle
of the COSO-based TRNG. Its mathematical models have been
presented in [1], [9]. The outputs of two ring oscillators, ClkA
and ClkB, are connected to the data and the clock inputs of a
D flip-flop (D-FF), respectively. The periods of the oscillators
are denoted by tA and tB . For ease of explanation, we assume
that the ratio of the periods is tA : tB = N : (N + 1), which
means ClkA goes td = tB − tA = tA/N faster than ClkB for
each cycle. If we suppose the both signals rise at time zero,
the D-FF will capture consecutive ‘1’s and ‘0’s before meeting
both rising edges again at the time NtB . The number of ‘1’s is
measured by a counter. Although the expected counter value
becomes N/2 = (tA/td)/2, the actual counter value varies
due to jitter of the signals. COSO utilizes the least significant
bits (LSBs) of the counter value as a source of entropy.

The most important parameter for COSO is td because it
offers a tradeoff between the variation of counter value and
the bit rate of generation. A problem of COSO is feasibility,
or how to get proper td from the pair of clock signals. To

Time

TO

�1 �2 W1 W2 WOSC-1

OUT

CTRL

T-FF
BUF1,1

�2

�1

TO

BUF1,N

BUF2,1 BUF2,M

NAND1

NAND2

0

Fig. 2. Architecture and working principle of the TERO-based TRNG.

manipulate td, some similar types of TRNGs utilize a pair
of PLLs (Phase-locked Loops) [3] or DCMs (Digital Clock
Managers) [6], instead of ring oscillators. Although these
TRNGs are more feasible than COSO, jitter obtained from
them is relatively small and power consumption tends to be
large [12].

B. Transition Effect Ring Oscillator

Figure 2 describes the architecture and the operating prin-
ciple of the TERO-based TRNG. The ring consists of two
branches and each branch has one NAND gate and zero or
more buffers (or even number of inverters). The numbers of
buffers in the respective branches are denoted by N and M
and their delay are denoted by τ1 and τ2. Without loss of
generality, we can assume that τ1 < τ2. The relative difference
of the delay is calculated by ∆r = (τ2− τ1)/(τ1+ τ2). When
the control signal CTRL rises from ‘0’ to ‘1’ at time zero, the
ring begins to oscillate. Logically, a repetition of ‘0’ for τ1
and ‘1’ for τ2 will appear at TO (TERO output).

In actual CMOS circuits, gates have an effect of amplifying
the relative difference of pulse widths of ‘0’ and ‘1’. This
means, without considering jitter, that the pulse width of ‘0’
becomes shorter every time the pulse goes around the ring.
The expected value of the pulse width of ‘0’ after it circles k
times, Wk, is calculated by the following formula:

Wk =
τ1 + τ2

2
(1−∆rR

k),

where R is an amplification factor. The oscillation stops when
Wk reaches zero (i.e. ∆rR

k ≥ 1). Such k, which means the
number of oscillations NOSC , is measurable by counting the
number of rising edges at TO. The distribution of NOSC is
modeled by R, ∆r, and the relative jitter σr [2]. The larger σr,
the larger the variance of the distribution. The T flip-flop (T-
FF) in Fig. 2 counts the LSB of NOSC as a source of entropy.
Since the model parameters are highly dependent on device
and placement, TERO also has a problem on feasibility.

The oscillation of TERO is a behavior when an RS latch
transits from the metastable state to one of the stable states.
Metastability of latches [4], [5] or flip-flops [10] is also

CNT

9-bit counter

BUFR

TO

Q[7:0]

Q[8]

PRE

D Q OE

8 8SET

D Q

Control Circ.TO

PRE

Q D Q

EN

Fig. 3. Proposed implementation of TERO-based TRNG controller.

leveraged by other types of TRNGs. They use the final output
after the oscillation, rather than the number of oscillations.
However, stochastic models for them have not been established
so far.

III. IMPLEMENTATION OF TERO-BASED TRNG FOR
XILINX FPGAS

The stochastic model of TERO [2] includes two important
implications. The first one is that too small ∆r might result in
an infinite oscillation. This unwanted behavior can be avoided
by monitoring the number of oscillation by a counter in order
to terminate it. The second one is that the relative jitter σr

becomes larger by making the delay of the ring τ1+τ2 smaller.
This means that the number of the buffers should be as small
as possible. However, timing constraints in the counter should
also be taken into account. If the delay of the ring (i.e. the
number of the buffers) is too small, setup time violation will
occur. If there is a clock skew among flip-flops in the counter,
hold time violation may also occur. Both of them lead to
malfunctions of the counter.

Based on the above considerations, we propose an imple-
mentation of TERO-based TRNG controller suitable for Xilinx
FPGAs. Figure 3 depicts the block diagram of the proposed
controller. The input signal TO is the output of the TERO
ring shown in Fig. 2. A buffer and a NAND gate in the
ring are instantiated as 1-bit and 2-bit LUTs, respectively,
with DONT_TOUCH attributes. The numbers of buffers in the
branches are empirically set to N = 3 and M = 5. Assuming
that all the NAND gates and buffers have the same delay,
τ1 : τ2 = 4 : 6 (i.e. ∆r = 0.2) is expected. The TO signal
drives the counter, along with a D-FF for detecting the end
of oscillation, through a regional clock buffer (BUFR). The
use of a clock buffer is recommended in Xilinx FPGAs to
minimize the clock skew [16]. A control circuit and D-FFs of
the output signals (CNT and OE) are driven by an external
system clock in order to communicate to other circuits.

The point is that the bit width of the internal counter is set
to 9 bits. When the counter value reaches 28, its MSB (Q[8])
becomes ‘1’ and the counter output (CNT) is set to 0xff. The
D-FF for terminal detection is periodically precharged (PRE)
to ‘1.’ Until the counter saturates, the D-FF becomes ‘0’ when
TO rises. At the end of each period, another D-FF is enabled
(EN) to capture the precharged D-FF as OE. It becomes ‘1’

TABLE I
ARITHMETIC MEAN AND STANDARD DEVIATION OF THE COUNTER

VALUES.

X \ Y 16 32 48 64 80
4 Avg. 23.21 19.02 60.47 28.84 25.13

S.D. 0.68 0.30 4.01 0.73 0.46
8 Avg. 61.35 21.87 40.46 167.03 254.97

S.D. 6.10 0.44 1.22 23.17 0.83

CTRL

R
O

O
u
t

ROSel

[1:0]

ROSel

[3:2]

ROSel

[2N-1:2N-2]

ROSel

[1:0]

Fig. 4. Architecture of the configurable ring oscillator [11].

if the oscillation has ended or the counter has been saturated.
In this paper, the cycle time of the PRE signal is set to 40 ns
to avoid a metastability in the precharged D-FF.

In addition, an infinite oscillation might still occur because
of timing violation at the counter. We introduce a timeout
period as a fail-safe. The control circuit forcibly sets OE to ‘1’
after the timeout. The period is set to 2 µs, which is certainly
longer than the time for saturation of the counter.

We placed this TERO implementation on different places of
an FPGA, and measured generated counter values. We set ten
different origins of placement (RLOC_ORIGIN) by combining
two X coordinates (4 and 8) and five Y coordinates (16, 32,
48, 64, and 80). An origin with an X coordinate of i and a Y
coordinate of j is expressed as XiYj. The relative position of
logic elements to the origin was fixed by RLOC constraints.
In this paper, circuits were synthesized by Vivado 2019.1 and
the target board was Digilent Arty (or Arty A7-35), which
included an Artix-7 XC7A35T FPGA. Note that the counter
value may saturate at 0xff = 255.

Table I summarizes the arithmetic mean (Avg.) and the
standard deviation (S.D.) of the 216 counter values. The origins
of X4Y48 and X8Y16 gave modest counter values, which was
well dispersed and suitable for a source of entropy. However,
the value was too small and almost constant in six out of
ten cases. In the other cases (X8Y64 and X8Y80), the value
was too large and sometimes or almost always saturated.
These results imply that, even if it is carefully designed and
implemented, TERO is still highly dependent on origin of
placement.

ROSel

[1:0]

ROSel

[2]
00

1*

01

00

1*

01

0

1

ROSel

[3:2]

00

1*

01

00

1*

01

ROSel

[4]

0

1

ROSel

[2N-1:2N-2]

00

1*

01

00

1*

01

CTRL

ROSel

[0]

0

1

ROSel

[1:0]

00

1*

01

R
O

O
u
t

Fig. 5. Architecture of the proposed TC-RO.

IV. THREE-PATH CONFIGURABLE RING OSCILLATOR

A. Configurable Ring Oscillator

To deal with the problem of feasibility of COSO (explained
in Section II.A), a configurable ring oscillator [11] was pro-
posed. Figure 4 describes the architecture of the configurable
ring oscillator, denoted as C-RO in this paper. It has four
copies of a set of NAND gates and buffers and each buffer is
replaced by a 4:1 multiplexer. Each pair of bits of a parameter
ROSel (ring oscillator selection) determines which NAND gate
or multiplexer in the previous stage is used. The frequency of
the ring can be configured by selecting a set of logic elements
by the parameter. The output signal (ROOut) is selected by
another multiplexer.

When implementing a C-RO from a ring oscillator with N
buffers, the number of required 6-input LUTs is 4N + 5 and
the bit width of ROSel becomes 2N , considering the number
of input ports of a 4:1 multiplexer (including selection input) is
six. This means that at least two additional LUTs are required
to obtain one bit of parameter in the C-RO.

B. Three-path Configurable Ring Oscillator

To optimize the C-RO on a Xilinx FPGA, we utilize a
multiplexer called F7MUX, which takes outputs of two LUTs
as data input. In general, it is used to organize one 7-input
LUT from two 6-input LUTs. Another bit of parameter can be
obtained by selecting whether outputs of LUTs pass through
F7MUX or not.

Figure 5 describes the architecture of the proposed three-
path configurable ring oscillator (TC-RO). It has two copies,
rather than four, of a set of NAND gates and buffers. The
number of data inputs of a multiplexer becomes three: two of
them come from LUTs and the other comes from F7MUX
(shown in gray). 0th, 2nd, 4th, ..., or (2N − 2)th bit of
parameter determines which 3:1 multiplexer (upper or lower)
is used, which is required in both 3:1 multiplexer and F7MUX.
1st, 3rd, 5th, ..., or (2N − 1)th bit determines whether output
of 3:1 multiplexer or F7MUX to be used.

When organizing a TC-RO from a ring oscillator with N
buffers, the number of required 6-input LUTs is 2N + 3 and
the bit width of the parameter becomes 2N +2 bits. Since the
number of input ports of a 3:1 multiplexer is five, a NAND gate

1
5

0
2

0
0

2
5

0
3
0
0

3
5

0

F
re

q
u

en
cy

 [
M

H
z]

X4Y32 X8Y32 X4Y32 X8Y32X4Y64 X8Y64 X4Y64 X8Y64

C−RO TC−RO

Fig. 6. Distribution of oscillation frequency of C-RO and TC-RO.

and a 3:1 multiplexer (enclosed by dotted lines) can be packed
into a single 6-input LUT. Approximately one additional LUT
is required to obtain one bit of parameter in the TC-RO.

C. Evaluation on Configurability on Oscillation Frequency

To evaluate the configurability of the TC-RO, we measure
the oscillating frequency of a C-RO and a TC-RO with an 8-bit
parameter. Based on the considerations in Sections IV.A and
IV.B, the number of stages of buffers (N) is set to four in the
C-RO and three in the TC-RO. The time to oscillate 50,000
times is measured for each of 28 parameters. Four origins,
X4Y32, X4Y64, X8Y32, and X8Y64 are examined.

Figure 6 is a box plot on the distribution of oscillating
frequency. It was widely distributed in the both oscillators. The
probability that a configurable COSO-based TRNG [11] with
a specific set of parameters gives proper td can be estimated
from these data, by choosing a pair of oscillators and their
parameters randomly and calculating their td. According to
our estimation, the probability that td became more than 74
(this threshold came from the previous study [11]) was 2.64%
for the C-ROs and 3.36% for the TC-ROs. This means the
configurability of the TC-RO is not less than the C-RO.

V. EVALUATION OF TC-TERO-BASED TRNG

In this section, we apply the TC-RO (described in Section
IV) to the implementation of TERO-based TRNG (proposed in
Section III) and evaluate it. A TERO organized from the C-RO
and the TC-RO is called C-TERO and TC-TERO, respectively.
Since the number of buffers in the branches are N = 3 and
M = 5, the C-TERO has a 16-bit parameter, while the TC-
TERO has a 20-bit parameter. We selected the same ten origins
as evaluated in Section III. Three different devices (boards)
were used for evaluation. The device which had been used in
the evaluations in Sections III and IV is denoted as Device A;
the additional devices are denoted as Devices B and C.

A. Configurability on Counter Values

First, we measure the average value of the counter. For each
of 216 or 220 parameters, 4,096 counter values were measured
and their sum and the sum of their squares were calculated.
Arithmetic mean and standard deviation of the counter value
is obtained from them. Whether the counter was saturated (i.e.
the value of 255 was obtained) at least once was also obtained.

0%

20%

40%

60%

80%

100%

X
4

Y
1

6
X

4
Y

3
2

X
4

Y
4

8
X

4
Y

6
4

X
4

Y
8

0
X

8
Y

1
6

X
8

Y
3

2
X

8
Y

4
8

X
8

Y
6

4
X

8
Y

8
0

X
4

Y
*

X
8

Y
*

X
4

Y
*

X
8

Y
*

X
4

Y
1

6
X

4
Y

3
2

X
4

Y
4

8
X

4
Y

6
4

X
4

Y
8

0
X

8
Y

1
6

X
8

Y
3

2
X

8
Y

4
8

X
8

Y
6

4
X

8
Y

8
0

X
4

Y
*

X
8

Y
*

X
4

Y
*

X
8

Y
*

P
ro

p
o
rt

io
n

224-255 192-223 160-191 128-159 96-127 64-95 32-63 0-31

C-TERO TC-TERO

Origin

Device

Method

A B C A B C

Fig. 7. Distribution of the average counter value of C-TERO and TC-TERO.

Figure 7 plots the distribution of the average counter value.
The results of the Devices B and C with the same X coor-
dinates of the origin is summarized in a single bar for each
coordinate. In similar to Section III, while the counter value
was too large or too small in most cases, a modest value was
observed in some cases. According to a preliminary evaluation,
we extracted parameters where the average counter value was
within a range of 96–127 and the counter was never saturated.
Such a counter is likely to be appropriate as a source of
entropy. The rate of the extracted parameters was 2.62% in
the C-TERO and 5.18% in the TC-TERO, on average. In the
C-TERO, the rate of parameters that gave small counter values
was increased when the X coordinate was 8, regardless of
device. Wires among logic blocks might have affected the
characteristics of the ring, as the C-TERO used more logic
blocks. Keeping the number of required logic elements small
is important not only because it is one of the requirements for
TRNGs, but also because it reduces such an effect.

B. Verification with the Stochastic Model of TERO

Next, we verify that the TC-TERO also follows the stochas-
tic model of the TERO [2]. For the rest of the evaluations, we
used Device A, the X4Y16 origin, and the parameter where
the arithmetic mean of the counter values was 112 and their
standard deviation was 7. We obtained the model parameters
of TERO from 216 counter values in the way instructed in the
literature [2].

0

1000

2000

3000

4000

90 100 110 120 130 140 150 160

#
 o

f
S

am
p
le

s

of Oscillations

Experimental

Modeled

Fig. 8. Distribution of counter values of TC-TERO and the stochastic model.

Fig. 8 compares the modeled distribution to the experi-
mentally obtained one. The model parameters were R =
1.01908, σr = 0.00192, and ∆r = 0.1159. The outline
of the distribution almost agreed, while some errors was
observed near the median. The modeling method assumed
that the probability that the counter value was not more than
the median was 0.5. However, the probability actually was
0.5325 in this experiment. This was a limitation of the model
itself. Therefore, the randomness of the TC-TERO can also be
justified by the stochastic model of the TERO.

C. Statistical Tests

Finally, we evaluate the quality of random numbers from a
TC-TERO-based TRNG. We generated a 1 Gibit of random bit
sequence by concatenating LSBs of counter values that were
not saturated. The bit rate of generation in this experiment was
1.912 Mbit/s. The number of LUTs and flip-flops used for this
TRNG (including the controller) was 40 and 29, respectively.

The generated sequence passed all of the tests of Procedures
A and B of AIS-31 [7] without post-processing, even though
Procedure A postulated the use of a post-processing method.
According to the entropy estimation test, the entropy per one
output bit was 0.9993 bit. This means that some bias was
observed but not so serious as to be incompliant to AIS-31.

After a simple post-processing where an output sequence of
a 4-bit LFSR was XOR-ed, the derived bit sequence passed
all of the tests of NIST SP 800-22 test suite [14]. The tests
were conducted to 1,073 bitstrings with the parameters rec-
ommended in AIS-31 [7]. Without post-processing, some tests
failed because of bias. Although the aforementioned hardware
amount does not consider post-processing, the additional logic
for an LFSR is estimated as almost negligible (a few LUTs
and flip-flops).

TABLE II
COMPARISON OF TC-TERO-BASED TRNG WITH OTHER TYPES OF TRNGS.

Type FPGA Family Area Throughput Statistical Test Remarks
(LUTs/Regs) [Mbit/s]

TC-TERO (This work) Artix-7 40/29 1.91 AIS-31 Proc. A
TERO [12] Spartan-6 39/12 0.63 AIS-31 Test T8 Dependent on Origin

RS Latch [4] Artix-7 716/974 20.0 NIST SP 800-22 No Statistical Models
Configurable COSO [11] Spartan-6 108/39∗ 3.30 AIS-31 Proc. B

COSO [12] Spartan-6 18/3 1.22 AIS-31 Test T8 Dependent on Origin
DCM [6] Virtex-5 19/26 0.21 NIST SP 800-22 Pair of DCMs Required

∗ Self-calibration circuit is included.

Through the evaluations in this section, we have demon-
strated that TC-TERO realized a TRNG that met all of the
major requirements. Comparison with other types of TRNGs
is summarized in Table II. TC-TERO is one of the strong
candidates for TRNGs on Xilinx FPGAs, as well as the
configurable COSO [11]. In a practical aspect, it is important
that their operating principles are totally different (as explained
in Section II), considering a risk that either of them will come
out to be compromised in the future.

VI. CONCLUSION

In this paper, we examined TERO-based TRNGs on Xilinx
FPGAs and proposed (1) an implementation methodology
that considers the stochastic model and (2) the TC-TERO
that achieves both high configurability and small amount of
additional hardware.

Our future work includes integration with a mechanism to
find an appropriate parameter automatically. A self-calibration
method similar to the C-RO [11] might be adopted. It is also
important to examine the dependency on operating conditions
such as supply voltage and temperature, because some of them
can be manipulated by an attacker.

REFERENCES

[1] F. Bernard, V. Fischer, and B. Valtchanov, “Mathematical Model of
Physical RNGs Based on Coherent Sampling,” Tarta Mountains Math-
ematical Publications, vol. 45, no. 1, pp. 1–14, 2010.

[2] F. Bernard, P. Haddad, V. Fischer, and J. Nicolai, “From Physical to
Stochastic Modeling of a TERO-based TRNG,” Journal of Cryptology,
vol. 32, no. 2, pp. 435–458, 2019.

[3] V. Fischer and M. Drutarovsky, “True Random Number Generator
Embedded in Reconfigurable Hardware,” in Proc. 3rd Workshop on
Cryptographic Hardware and Embedded Systems, 2002, pp. 415–430.

[4] N. Fujieda and S. Ichikawa, “A latch-latch composition of metastability-
based true random number generator for Xilinx FPGAs,” IEICE Elec-
tronics Express, vol. 15, no. 10, pp. 20 180 386:1–20 180 386:12, 2018.

[5] H. Hata and S. Ichikawa, “FPGA implementation of metastability-based
true random number generator,” IEICE Transactions on Information &
Systems, vol. E95-D, no. 2, pp. 426–436, 2012.

[6] A. P. Johnson, R. S. Chakraborty, and D. Mukhopadyay, “An Im-
proved DCM-Based Tunable True Random Number Generator for Xilinx
FPGA,” IEEE Transaction on Circuits and Systems II: Express Briefs,
vol. 64, no. 4, pp. 452–456, 2017.

[7] W. Killmann and W. Schindler, A proposal for: Functionality classes for
random number generators, version 2.0, Federal Office for Information
Security, 2011.

[8] P. Kohlbrenner and K. Gaj, “An embedded true random number gen-
erator for FPGAs,” in Proc. 12th International Symposium on Field
Programmable Gate Arrays, 2004, pp. 71–78.

[9] Y. Lao, Q. Tang, C. H. Kim, and K. K. Parhi, “Beat Frequency
Detector–Based High-Speed True Random Number Generators: Statis-
tical Modeling and Analysis,” ACM Journal on Emerging Technologies
in Computing Systems, vol. 13, no. 1, pp. 1–25, 2016.

[10] M. Majzoobi, F. Koushanfar, and S. Devadas, “FPGA-Based True
Random Number Generation Using Circuit Metastability with Adaptive
Feedback Control,” in Proc. 13th Workshop on Cryptographic Hardware
and Embedded Systems, 2011, pp. 17–32.

[11] A. Peetermans, V. Rožić, and I. Verbauwhede, “A Highly-Portable
True Random Number Generator based on Coherent Sampling,” in
Proc. 29th International Conference on Field Programmable Logic and
Applications, 2019, pp. 218–224.

[12] O. Petura, U. Mureddu, N. Bochard, V. Fischer, and L. Bossuet, “A
survey of AIS-20/31 compliant TRNG cores suitable for FPGA devices,”
in Proc. 26th International Conference on Field Programmable Logic
and Applications, 2016, pp. 1–10.

[13] B. Ray and A. Milenković, “True Random Number Generation Using
Read Noise of Flash Memory Cells,” IEEE Transactions on Electron
Devices, vol. 65, no. 3, pp. 963–969, 2018.

[14] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh,
M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, A
statistical test suite for random and pseudorandom number generators
for cryptographic applications, NIST Special Publication 800–22, Rev.
1a, 2010.

[15] M. Varchola and M. Drutarovsky, “New high entropy element for FPGA
based true random number generators,” in Proc. 12th Workshop on
Cryptographic Hardware and Embedded Systems, 2010, pp. 351–365.

[16] Xilinx Inc., 7 Series FPGAs Clocking Resources, User Guide UG472
v1.14, 2018.

