This is the preprint (pre-peer reviewed version) of the following article: Naoki Fujieda and Shuichi Ichikawa: “Enhanced
Instruction Register Files for Embedded Software Obfuscation,” Proc. of 29th International Conference on Computers and
Their Applications (CATA-2014), pp. 153-158 (03/2014). The final version is included in the ISCA (International Society
of Computers and their Applications) proceedings, whose ISBN is 978-1-880843-95-6.

Enhanced Instruction Register Files
for Embedded Software Obfuscation

Naoki Fujieda and Shuichi Ichikawa
Department of Electrical and Electronic Information Engineering
Toyohashi University of Technology
Toyohashi, AICHI, 441-8580, JAPAN

fujieda@ee.tut.ac. jp,

Abstract

Computer software might be analyzed, plagiarized,
and falsified unless obfuscation or encryption is applied.
One of cost-effective obfuscation techniques is instruction
set randomization, which modifies or enhances instruction
coding of processors. Using an Instruction Register File
(IRF) is one of the attractive candidates of such techniques,
while it lacks quantitative evaluation about tamper resis-
tance. In this paper, we first quantify the effectiveness of
the additional coding that disguises instruction sequences.
We then propose heuristic algorithms that search for sub-
optimal assignments of the IRF. Our evaluation shows that
the IRF that allocates a single instruction to multiple entries
greatly improves the tamper resistance. Lastly, we present
that the hardware overhead of an embedded processor is
acceptable with a large IRF implemented on an FPGA.

1 Introduction

In recent years, the protection of software from anal-
ysis, plagiarism, and falsification has been an important is-
sue. This property is often called tamper resistance. In
particular, leakage of trade secrets is a serious problem.
Though software can be encrypted, or at least obfuscated,
for protection against reverse engineering, additional cost
brings up another important issue. For embedded systems,
anti-tamper methods should be realized with small over-
head.

Instruction set randomization [1][2][3][4] is one of
cost-effective obfuscation approaches. This technique pro-
tects processors from analysis or plagiarism by giving them
different or additional instruction coding system that is hid-
den from attackers. Moreover, diversified instruction sets
are naturally resistant to falsification because a malicious
instruction sequence for one processor will not operate cor-
rectly on the others.

ichikawa@tut. jp

The use of an Instruction Register File (IRF) [5] is one
of the attractive candidates of instruction set randomiza-
tion. The IRF is a small memory that stores the most com-
mon expressions of instructions specified by the compiler.
It is referred by an index written in fetched instructions.
Though it initially aimed at reducing power consumption
by packing multiple instructions into a single one [5], it
also has resistance to tampering [6], for reference to the
IRF is considered as an additional expression of instruc-
tions.

The problem is that there is no quantitative evaluation
about tamper resistance of the IRF. The contents of the IRF
may be guessed from the occurrence frequency of indices,
or a routine to be hidden may not include enough number
of references of the IRF. The possibility of such risks is not
evaluated in [6], although the side effects of the IRF, the
code reduction and the execution time, are measured.

In this paper, we study the effectiveness of the IRF
against tampering, particularly reverse engineering. We
first quantify the efficiency of instruction hiding, and then
propose heuristic algorithms to store proper instructions in
the IRF. Lastly, we show that a large IRF can be imple-
mented with a small hardware cost on an FPGA.

2 Background
2.1 Instruction Set Randomization

Encryption of instruction memory is one of the most
typical anti-tamper approaches for processors, which was
used in the Execute Only Memory (XOM) [7] and AEGIS
architecture [8]. Most of the methods adopt modern ci-
phers such as AES to decrypt instruction memory that was
encrypted at compile time. Even data memory is often en-
crypted and decrypted on the fly. This approach is useful
for applications where security is the most important con-

cern. Nevertheless, it significantly increases the memory
access latency and the hardware amount, and thus it is un-
suitable for cost-sensitive embedded systems.

Instruction set randomization (ISR) can be considered
as lightweight memory encryption. Compared to robust
but costly modern ciphers, it is based on simple substitu-
tion ciphers for lower overhead. Both hardware [1][4] and
software [2][3] implementations have been studied. Some
methods utilize the characteristics of the target instruction
set [4].

An important measure of ISR is the hardness to guess
the original instructions from the randomized ones with fre-
quency analysis [9]. Some kinds of instructions might be
easily guessed from statistical properties of the obfuscated
binary (e.g. the frequencies of opcode values). The analy-
sis might be even easier if heuristics are applied. For exam-
ple, the reserved fields of specific instructions are always
set to zero. To prevent frequency analysis, it is important
for ISR to leave less statistical information of the original
instructions.

2.2 Instruction Register File

Instruction Register File (IRF) [5] is a table of fre-
quently used instructions. The IRF is placed between in-
struction fetch and instruction decode stages and accessed
by an index. If a specialized instruction is fetched, the cor-
responding instruction(s) to the index (or indices) will be
read from the IRF and sent to the decoder.

The IRF has originally been proposed to compress in-
struction sequences. Since the bit length of an index of
the IRF is much shorter than that of an original instruction,
multiple IRF instructions can be extracted from a special-
ized instruction. In [5], the target instruction set, MIPS,
was modified so that some instructions can include an in-
dex (or indices). They can be classified as loosely or tightly
packed, as depicted in Figure 1. Gray fields in Figure 1
are used to obtain instructions from the IRF. They are 5
bits long for the original IRF with 32 entries. A loosely
packed instruction (the middle row in Figure 1) contains
a regular MIPS instruction and an IRF instruction, while a
tightly packed instruction (the bottom row) stores up to five
IRF instructions. Although the original IRF proposal [5]
includes a parameterization technique to improve the effi-
ciency of tightly packed instructions, we do not consider it
in this paper.

2.3 Using IRF for Anti-tampering

In addition to the reduction of code length, the IRF
has an effect of ISR that is applicable to a part of instruc-
tions [6]. It is possible to protect software from analysis
by arbitrarily shuffling the mapping from indices to IRF
instructions. The IRF also provides a protection from pla-
giarism if we diversify the mapping and the corresponding

Original R-Type Instruction Format

Lopcode | rs | rt | rd | shamt]| funct |
31 26 21 16 11 6 0

Loosely Packed R-Type Instruction Format
IS

shamt t rd funct

31 26 21 16 11 5 0

opcode

(Tightly Packed) T-Type Instruction Format

‘ inst4 inst5
param param
31 26 21 16 11 6 5 0

Gl Finstl | inst2 | inst3

Figure 1: Additional instruction formats to reduce the code
size with the IRF [5].

instruction sequence for each system. Similarly, if we pro-
hibit IRF instructions from being executed directly from in-
struction memory, it becomes robust over falsification. In
comparison with other ISR methods, the IRF has an advan-
tage of hiding information about operands.

For all these merits, the IRF is not practical without
modification mainly because of the following two short-
comings. First, it might be too small to obfuscate the in-
struction sequences that developers want to hide. Although
it may be a solution to have different mappings for each
process or routine, it may cause another problem of keep-
ing the mappings themselves securely. Second, it lacks a
consideration for frequency analysis. If the goal of the IRF
is tamper resistance, it might be a bad idea to just put the
most frequent instructions in it. Unfortunately, the evalua-
tion of these risks is not presented in [6].

A possible approach to remedy the risks is to increase
the number of the entries in the IRF and to use a mapping
common to all processes. The number of instructions cov-
ered by the IRF will be large enough to obfuscate impor-
tant routines. The difficulty of frequency analysis will be
greatly increased because lower-ranking instructions have
almost the same occurrence probability. It may be difficult
even to find which instructions reside in the IRF.

On utilizing a large IRF, we have to consider the fol-
lowing concerns: how to evaluate the selection of IRF in-
structions, how to select IRF instructions, and how large
the hardware or performance overhead is. We propose and
evaluate a solution in the following sections.

3 Selection of IRF Instructions

3.1 Scale of Tamper Resistance for IRF

Each instruction has different occurrence frequency.
The distribution of occurrence probability in object codes
is plotted in Figure 2. 32-bit MIPS instruction expressions

s 1

Z

E

£ ol

2

"

2

]

ﬁ 00! \
0.001

NOADN O AN DA N0 DD
N » o & S 57 X S &
s \9’1»\5"’)'& LR b‘@b‘b ‘3{»43 [b‘o‘)'\\ N %\0)

Rank of Instruction

Figure 2: Occurrence Probability Distribution of MIPS In-
structions.

are arranged in descending order, from left to right. The
Y-axis is occurrence probability of each instruction (in log-
arithmic scale). The measurement condition is the same as
in Section 4. The difference of the probabilities between
two adjacent instructions decreases as the rank goes lower.

The following two factors should be considered in the
selection of instructions: (1) the coverage of IRF instruc-
tions and (2) the cost of frequency analysis. We introduce
some symbols to quantify them. We first gather an instruc-
tion profile by dynamic profiling of a typical application.
Each 32-bit instruction expression, I, has the number of
times dynamically executed and the number of times stat-
ically appeared. We define them as C'p(I) and Cs(T),
respectively. They naturally differ since each instruction
might be executed multiple times. When it is executed n
times, Cp is incremented by n, while Cg is just incre-
mented by 1. From them, dynamic execution frequency
Pp(I) and static occurrence probability Ps(I) are calcu-
lated as follows:

o) = <20 pory = O

> i1 Cp(i) > i1 Cs (i)

where I is the set of all the possible expressions of MIPS
instructions.

The coverage of IRF instructions is defined as v(IRF)
with the following formula:

Y(IRF) = V" Pp(IRF;)

where IRF; is the IRF instruction of the index 7 and N is
the number of entries in the IRF. The coverage becomes
1 when all of the executed instructions are included in the
IRF, while it becomes 0 when no IRF instructions are ex-
ecuted. Most of the programs have a small sequence of
instructions that are repeatedly executed. We formulate the
coverage with dynamic frequency Pp because such a part
is more suitable for being hidden than others.

The cost of frequency analysis is quantified with
E(IRF) or the Shannon entropy H of the IRF index. It

is formulated as follows:

— SV Ps(IRF,)log Ps (IRF;)
E(IRF) = H(I) = T

E(IRF) is normalized by its theoretical limit, or logN. The
cost becomes 1 when all of the IRF indices appear com-
pletely evenly, while it becomes 0 when only one index
appears. Since frequency analysis is often made statically
with program codes, we use Pg to measure the evenness of
the distribution here.

To maximize the coverage, the same strategy is
adopted as in the original IRF proposal [5]. It excels in
the chance of instructions being obfuscated; however, the
deviation of the frequency distribution is large (see the left-
most part of the graph in Figure 2) and frequency analysis
is relatively easy.

On the other hand, maximizing the cost leads to
choosing lower-rank instructions. It makes the analysis
more difficult because of smaller deviation of the frequency
distribution, but most of the instructions will be left unmod-
ified.

Based on the observation above, we define the scale of
effectiveness of instruction selection, denoted by S(IRF),
as the product of the coverage and the cost:

S(IRF) = ~(IRF) x E(IRF)

Even though all the instructions reside in the IRF, if the dis-
tribution is extremely skewed to a few entries, the original
instruction sequence will easily be guessed by frequency
analysis. Similarly, the IRF does not make any sense when
the included instructions are seldom used even though the
frequency distribution is completely even, In these cases,
the scale should be O rather than (the arithmetic average of)
0.5.

3.2 Algorithm

Finding the optimal selection of IRF instructions is
now formulated as a combinatorial optimization problem
to maximize S(IRF) defined in the previous subsection. We
use a heuristic algorithm based on local search to find a sub-
optimal solution rather than the exact one, which is difficult
to compute in a practical time.

The proposed algorithm is shown in Figure 3. Any
combination of N instructions without duplication is al-
lowed as an initial IRF instructions, though computation
cost will be smaller by selecting instructions that have the
highest Pp(I)+ Ps(I). The lists of candidates for addition
and removal are called List_add and List_rem, respec-
tively. List_add can be limited to about N/2 instructions
that have the highest Pp (1) + Ps([) next to the initial IRF
instructions; the resulting combination does not change in
most cases.

1: IRF < any N instructions

2: List_add <« instructions except I RF’

3: List.rem < IRF

4: loop

5: scale_cur < S(IRF)

6: find c_add that maximizes S(IRF + c_add) from List_add
7. scale_inc < S(IRF + c_add) - scale_cur

8: find c_rem that maximizes S(IRF — c.rem) from List_rem
9: scale_dec <+ scale_cur — S(IRF + c.rem)
10: if scale_inc > scale_dec then
11: IRF <+ IRF + c_add — c_.rem
12: List_add < List_add — c_add
13: List_rem < List_-rem — c_rem
14: else
15: break
16: end if
17: end loop

Figure 3: Pseudocode for selecting IRF entries.

After the initialization, the algorithm repeatedly finds
a candidate for addition c_add from List_add and a can-
didate for removal c_rem from List_rem. If the increase
of the scale by addition of c_add is more than the decrease
by removal of c_rem, they are swapped and then removed
from the lists; otherwise, the current combination of I RF'
is output as a near-optimal solution. The time complexity
of the algorithm is O(N3), for a search for the candidate
takes O(N?) and the number of repetition is up to N.

3.3 Duplicated IRF Entries

Although the problem of deviation is partially solved
by the above algorithm, it still remains with higher-rank,
frequently used instructions because their removal causes
serious decrease in the coverage. Here we propose a modi-
fied algorithm that assigns multiple entries to the frequently
used instructions. By allowing duplication, some lower-
rank instructions are removed from the IRF; however, such
instructions have little impact on the coverage. In this pa-
per, we assume that we can equally use indices of entries to
which a duplicated instruction is assigned; that is, when an
instruction [is associated with & entries, the static proba-
bility of each entry is calculated as Pg([)/k.

The modified algorithm is shown in Figure 4. Now
the initial IRF instructions are also included in the candi-
dates for addition. When we assume n as the number of
entries to be added, the calculation of the expected increase
of the scale by addition of an instruction is changed to the
average increase of the scale by adding n entries per n. We
find a pair of an instruction c_add and the number of addi-
tional entries n_add that maximizes the expected increase.
If multiple entries are to be added, or n_add is two or more,
n-add items that have the minimum decrease of the scale
are chosen from List_rem as candidates for removal. The
removal of an instruction from List_rem occurs not only
when it is removed from the IRF but also when it is du-
plicated in the IRF. The time complexity of the modified

1: IRF < any N instructions
2: List.rem < IRF

3: loop
4: scale_cur < S(IRF)
5: find c_add and n_add that maximize

S(IRF + c-add * n_add)/n_add from all instructions
6 scale_inc < S(IRF + c_add * n_add) - scale_cur
7: C_rem < an empty array
8: scale.dec <0
9: for i in [1..n_add] do
0 find ¢ that maximize S(IRF — c)
from List_rem — c.add — C_rem

11: C_rem < C_rem+c

12: scale_dec + scale_dec + {scale_cur — S(IRF — c)}
13: end for

14: if scale_inc > scale_dec then

15: IRF < IRF + c.add * n_add — C_rem

16: List_rem < List_.rem — c.add — C_rem

17: else

18: break

19: end if

20: end loop

Figure 4: Pseudocode for selecting IRF entries with dupli-
cation.

algorithm is still O(N?3), while actual computation time be-
comes much longer than the original because of the search
for n_add and the increase of the number of repetition. We
may reduce the computation cost of finding n_add from the
fact that the proper n is 1 for most instructions.

4 Evaluation
4.1 Methodology

We use 36 traces of MiBench [10], taken with a mod-
ified version of SimMips version 0.7.5 [11]. These bench-
marks are compiled with gcc 4.7.3, uClibc 0.9.33.2, and
binutils 2.21. The instruction set is MIPS32 Release 1, as-
suming hardware floating point unit. The compile options
are same as the defaults of MiBench except asserting a flag
for static compilation (-static). Some files are slightly
modified to avoid compile errors probably due to the dif-
ference of compiler versions.

We evaluate the scale of instruction selection for a
tamper-aware IRF with three algorithms as follows:

e max_dyn aims to maximize the coverage, or the sum
of dynamic execution frequency in the IRF, which is
corresponding to the original proposal [5].

e no_dup is the proposed algorithm without duplication,
which we have described in Section 3.2.

e dup is the modified algorithm allowing duplication,
which has been proposed in Section 3.3.

We vary the number of IRF entries, N, exponentially from
32 to 2048.

max_dyn =&=no_dup =li=dup

0.8
0.7
0.6 —
0.5
0.4
0.3
0.2
0.1 =
0 +—r—T" T TV T T T T T T
SR S NN R AR AR A

S(IRF): Scale of Instruction Selection

of IRF Entries

Figure 5: The number of IRF entries vs. scale of instruction
selection.

4.2 Tamper Resistance

Figure 5 depicts the relationship between the num-
ber of IRF entries and the scale of instruction selection,
which correspond to X- and Y-axes, respectively. Due to
the consideration of the entropy of the frequency distribu-
tion, no_dup achieved 4% to 22% increase of the scale over
max_dyn. The increase rate was higher when the number
of entries was smaller. We think it is because the room for
selection is large in such cases. On the other hand, dup
showed 11% to 14% higher scale, with smaller influence of
the number of entries, than no_dup. It worked effectively
regardless of the size of the IRF.

To discuss the effect of our proposal further, we show
the breakdown of the scale, or the coverage of IRF instruc-
tions and the cost of frequency analysis, in Figure 6. The
X-axis is the relative entropy of the static distribution of
IRF indices (or the cost of analysis). The Y-axis is the sum
of dynamic execution frequency (or the coverage). Num-
bers near the points of the graph represent the number of
entries (only the cases of 32, 128, 512, and 2048 entries
are shown). The cost of frequency analysis was greatly
improved by both of the algorithms. The improvement of
no_dup over max_dyn is 7% to 36%; the further improve-
ment of dup over no_dup is 12% to 20%. However, the
decrease of the coverage of no_dup and dup over max_dyn
was very small: it was less than 10% and 12% in no_dup
and dup, respectively. Judging from the figures, our algo-
rithms successfully enhance the protection for frequency
analysis with small overhead of the coverage of the IRF.

4.3 Hardware Overhead

We implemented a processor with a large IRF on a
Xilinx FPGA. We need a reasonably large number of en-
tries to obfuscate an important routine that developers want
to be hidden. From Figure 6, a 1024-entry IRF supplies
about two-thirds of instructions in the execution. Fortu-

max_dyn ——no_dup —=—dup |
1
< 09
o 2 2048 ,2048 2048
SE08 r
g£2o7
g = 0.6 12 f
= o8 Jsn
S0 ¥ 4 ¥ |
= Eo4 128 yd 7
£ %03 128 128
2200 4 Fi
=& U E > B]
& 01 32 32 32
0 T T T T ,
0.5 0.6 0.7 0.8 0.9 1

E(IRF): Normalized Entropy of IRF Indexes

Figure 6: The difference with our methods in the break-
down of the scale.

PC R Inst = ‘\
> 2 iﬁ“) >
32 32 9+ 32
IRF

H
IMem é
or > > g
ICache 32 3-0.

> >E 32> /

Instruction Instruction Instruction
Fetch Translation Decode

Figure 7: An additional “Instruction Translation” stage be-
tween instruction fetch and decode.

nately, we can use block RAMs (BRAMs) in an FPGA to
effectively implement an IRF of this size.

Figure 7 shows the diagram of partial pipeline of a
processor with a BRAM-implemented IRF. We do not con-
sider instruction packing: normal MIPS instructions are
transformed to specialized instructions (which refer to the
IRF) on a one-to-one basis. An additional pipeline stage
for translation is needed because BRAMs are clock syn-
chronous. Either the outcome of the IRF or the fetched
instruction is passed to the instruction decoder. This addi-
tional “Instruction Translation” stage may slightly increase
the branch miss penalty.

We chose Plasma [12] as the target processor. Plasma
has a 4-stage pipeline, two stages of which are consumed in
instruction fetch. We found that “Instruction Translation”
stage could be merged into the latter of the fetch stages.
Therefore we were able to apply an IRF to Plasma without
large modification of the pipeline.

We confirmed that the modified Plasma worked cor-
rectly on the Xilinx Spartan-3E Starter Board. We then
evaluated the addition of hardware amount and the loss of
the maximum operating frequency. The circuit was imple-

mented with Xilinx ISE 14.6, optimized for speed. When
we added a 1024-entry IRF, the additional number of slices
was 73 (3.7% of Plasma) and that of BRAMSs was 2. The
loss of the maximum frequency was about 11%, which is
due to longer critical path of instruction decode. Optimiza-
tion of implementation is left as a future work.

5 Discussion

This section discusses the two following topics re-
lated to our proposal: (1) the use of pairs or triplets of in-
structions and (2) handling of nop.

In this paper, we defined the cost of frequency anal-
ysis under the assumption that it was solely based on the
frequency distribution of a single instruction. Actually,
there is a certain correlation between the adjacent instruc-
tions. Thus our proposal may still be vulnerable to fre-
quency analysis using the distribution of pairs or triplets
of instructions. Some software-based approaches exist to
remedy such deviations. For example, instructions can be
swapped as long as they are in the same basic block and the
dependency is not broken [13].

In MIPS processors, nop (no operation) is often the
most frequently executed instruction. It is true that nop is
never related to algorithms; however, it is required in some
cases due to delayed branch, dependency of load instruc-
tions, and so on. This characteristic of MIPS might not
appear in other instruction sets (e.g. ARM). Investigation
of the relationship between the instruction set and the fre-
quency distribution is left for future studies.

6 Conclusion

This work presented a study on the tamper-aware use
of the IRF. The key points of our proposal are twofold:
(1) we should consider the entropy of the distribution of
IRF index occurrence, and (2) some of the most frequent
instructions should be assigned to multiple IRF entries.
According to our evaluation, the protection for frequency
analysis was much enhanced with small overhead of the
coverage of the IRF.

The items for future studies are summarized as fol-
lows. First of all, the algorithm should be improved for
higher precision or shorter computation time. Further eval-
vation and optimization of hardware implementation are
desired for practical applications. It is also important to
verify the effectiveness of the algorithm with other instruc-
tion sets.

References

[1] G.S. Kc, A. D. Keromytis, and V. Prevelakis, “Coun-
tering code-injection attacks with instruction-set ran-
domization,” in Proc. of CCS 03, pp. 272-280, 2003.

[2] E. G. Barrantes, D. H. Ackley, S. Forrest, and
D. Stefanovi¢, “Randomized instruction set emula-
tion,” ACM Trans. on Information and System Secu-
rity, vol. 8, no. 1, pp. 3-40, 2005.

[3] G. Portokalidis and A. D. Keromytis, “Fast and
practical instruction-set randomization for commod-
ity systems,” in Proc. of ACSAC ’10, pp. 41-48, 2010.

[4] S.Ichikawa, T. Sawada, and H. Hata, “Diversification
of processors based on redundancy in instruction set,”
IEICE Trans. on Fundamentals, vol. E91-A, no. 1, pp.
211-220, 2008.

[5] S. Hines, J. Green, G. Tyson, and D. Whalley, “Im-
proving program efficiency by packing instructions
into registers,” in Proc. of ISCA-32, pp. 260-271,
2005.

[6] D. Chang, S. Hines, P. West, G. Tyson, and D. Whal-
ley, “Program differentiation,” in Proc. of INTERACT-
14, no. 9, 2010.

[7] D. L. C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz, “Architectural support
for copy and tamper resistant software,” in Proc. of
ASPLOS-IX, pp. 168-177, 2000.

[8] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and
S. Devadas, “AEGIS: architecture for tamper-evident
and tamper-resistant processing,” in Proc. of ICS 03,
pp- 160-171, 2003.

[9]1 F. L. Bauer, Decrypted Secrets: Methods and Maxims
of Cryptology, 4th ed. Springer, 2006.

[10] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown, “MiBench: A
free, commercially representative embedded bench-
mark suite,” in Proc. of WWC-4, pp. 3-14, 2001.

[11] N. Fujieda, S. Watanabe, and K. Kise, “A MIPS sys-
tem simulator SimMips for education and research of
computer science,” IPSJ J., vol. 50, no. 11, pp. 2665—

2676, 2009.
[12] S. Rhoads, “Plasma - most MIPS
I(TM) opcodes.” [Online]. Available:

http://opencores.org/project,plasma

[13] K. Hattanda and S. Ichikawa, “Redundancy in in-
struction sequences of computer programs,” /EICE
Trans. on Fundamentals, vol. E§9-A, no. 1, pp. 219-
221, 2006.

