in other works.

This is the accepted version of the following article: Naoki Fujieda and Shuichi Ichikawa, “An XOR-based approach to
merging entries for instruction register files,” Proc. 1st International Symposium on Computing and Networking (CANDAR
"13), pp. 332-337 (12/2013), which has been published in final form at http://dx.doi.org/10.1109/CANDAR.2013.60.

(©2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work

An XOR-based approach to merging entries for
instruction register files

Naoki Fujieda and Shuichi Ichikawa
Department of Electrical and Electronic Information Engineering,
Toyohashi University of Technology

fujieda@ee.tut.ac. jp,

Abstract—The instruction register file (IRF) is an attractive
approach to reduce power consumption, which is essential to
many embedded systems. However, the previously proposed IRF
implementation is not efficient in merging similar instructions
into a single entry in the IRF. In this paper, we propose an
XOR-based merging approach that achieves higher efficiency
in grouping instructions with simple hardware. Our evaluation
shows that the proposed approach can convert 19.6% more
dynamic instructions into references of the IRF than the previous
techniques, and that it reduces the number of instruction fetches
from the cache by 4.8% on average.

I. INTRODUCTION

Reducing power consumption is essential for most embed-
ded systems. In particular, it is very important to improve the
efficiency of instruction fetch logic in embedded processors
because it is the most power-hungry part in some processors
[1].

The major reasons for high power consumption of in-
struction fetch are twofold. First, the information density
of fetched instructions is very low, so processors retrieve
much less information from them than their theoretical limit.
The instruction set architectures (ISAs) of RISC processors
are usually designed to simplify decode logic rather than
to shorten program codes. An additional, high-density ISA
can be a solution of this problem. For example, some MIPS
embedded processors support MIPS16 ISA [2] where an
instruction has 16 bits, a half-length of an original MIPS
instruction. MIPS16 instruction set includes a fixed subset
of original MIPS instructions. Shrivastava et al. [3] reported
that the code size of MIPS32/16 program is reduced by 22%
on average with a careful selection of instructions. However,
the efficiency of such dual-ISA designs is heavily dependent
on applications: if most of the executed instructions are not
included in the subset, they must be written in the traditional

ichikawa@tut. jp

MIPS instructions and thus the number of instruction fetches
is almost unchanged. Second, even though the L1 instruction
cache is much smaller than lower-level caches, it is still a
large component in the context of embedded processors. A lot
of proposals include a smaller storage than the L1 and help
processors to supply instructions from it. A filter cache [4]
and a loop cache [5] operate as LO instruction caches, which
try to store heavily-reused instructions in different strategies.
A scratchpad memory (SPM) [6] has a physical address that is
separated from the main memory. It is managed by software
to keep the most frequent instructions (and/or data).

An instruction register file (IRF) [7] is a remedy for both
of the problem. The IRF is a small memory storing the
most common expressions of instructions specified by the
compiler. Fig. 1 describes the concepts of the filter cache,
the SPM, and the IRF. A remarkable difference of the IRF
from the others is that the storage is accessed by an index
written in fetched instructions rather than the program counter.
By packing common instructions into a single instruction
with these indexes, it improves the information density of
instructions and reduces the number of fetches from the L1.

To compensate for lack of entries in the IRF, we can merge
multiple instructions with similar expressions into a single
group. An instruction that is not the most common in a group
is referenced with the index corresponding to the group and a
parameter that has the same length as the index.

The problem of the previously proposed IRF implementa-
tion is the inefficiency in grouping instructions. We propose an
XOR-based approach to merging instructions more efficiently.
It increases the number of continuous references to the IRF,
that is, the chance of instruction packing. We evaluate the
methods with traces of practical benchmarks and show that
our approach reduces the number of instruction fetches.

Processor

Processor Processor

[\
L1 SPM L1
(a) Filter Cache (b) Scratchpad (c) Instruction
Memory Register File (IRF)

Fig. 1. Different approaches for reducing fetch power consumption with
small RAMs.

II. INSTRUCTION REGISTER FILE
A. Overview

The concept of the instruction register file (IRF) [7] is
shown as (c) in Fig. 1. The IRF is placed between instruction
fetch and instruction decode stages and accessed by an index
written in fetched instructions. The target instruction set (MIPS
in [7]) is modified so that some instructions can include a
reference (or references) to the IRF. If a fetched instruction has
a reference, the corresponding instruction in the IRF is read
and sent to the decoder. In other words, frequently executed
instructions are given different expressions, which are much
shorter than usual ones, by the IRF. They are called IRF
instructions. The modified instruction set has two kinds of
instructions that include multiple instructions: loosely packed
and tightly packed.

The loosely packed instructions modify the existing R-Type
and I-Type instruction formats of MIPS. Fig. 2 shows the
difference between the formats of normal MIPS instructions
and those of loosely packed instructions. The shamt field (in
the R-Type) or a part of the imm field (in the I-Type) is
replaced by the 5-bit insz2 field, which indicates an index for
the IRF reference. When an R-Type or I-Type instruction is
followed by an IRF instruction, they can be packed into a
loosely packed instruction; however, if the latter instruction
does not reside in the IRF, they cannot be packed and the
inst2 field of the former instruction is set to (the index of) a
nop.

The tightly packed instructions add the T-Type format to
the traditional MIPS instruction formats. Fig. 3 describes
the T-Type format and the tightly packed instructions. It is
composed of a 6-bit opcode field, five 5-bit inst/param fields,
and an S bit: a supplement bit to opcode. Each inst/param
field represents an index of the IRF or a parameter, which
is described later, attached to an IRF instruction. Thus each
tightly packed instruction contains up to five IRF instructions
or three IRF instructions with two parameters. They consist of
eight different instructions for specifying the number of pa-
rameterized IRF instructions and their positions. Parameterized
IRF instructions are shown as shaded fields in Fig. 3.

By parameterizing instructions, we can merge multiple
instructions with similar expressions into a single entry in the

R-Type
| opcode | rs | rt | rd |shamt]| funct |
31 26 21 16 11 6 0
| opcode | rs | rt rd | funct | inst2 |
shamt
31 26 21 16 11 5 0
I-Type
[opcode | rs | rt | immediate |
31 26 21 16 0
| opcode | rs | rt | immediate | inst2 |
31 26 21 16 5 0

Fig. 2. Loosely packed instructions where a regular instruction and an IRF
instruction are merged [7].

T-Type Format

| opcode | instl | inst2 | inst3 |;2:§ﬁ1|5|;2:’;‘:’n
31 26 21 16 11 6 5 0
T-Type Instructions

tights	instl	inst2	inst3	inst4 [S] inst5		
parama_A	instl	inst2	inst3	inst4	S	param
parama B	instl	inst2	inst3	inst4	S	param
parama_c	instl	inst2	inst3	inst4	S	param
parama D	instl	inst2	inst3	inst4	S	param
param3_AB	instl	inst2	inst3	param	S	param
param3_ac	instl	inst2	inst3	param	S	param
param3_BC	instl	inst2	inst3	param	S	param

Fig. 3. Tightly packed instructions that can contain up to 5 IRF instructions
[7].

IRF. A 32-entry IRF that is referenced only by a 5-bit index
contains 32 kinds of instructions, which is too few to cover
most of the frequent instructions in some cases. On the other
hand, if each entry represents 32 instructions differentiated by
a 5-bit parameter, the IRF will have as many as 1024 kinds
of IRF instructions. An instruction that is the most commonly
used in a group is stored in the IRF as a default so that it can
be referenced without a parameter. The other instructions in
the group are reconstructed by an index and a parameter.

The previously proposed IRF implementation uses three
techniques for merging instructions: compressing immedi-
ate values with an immediate table, merging short-distance
branches, and using indirect register specifiers [7]. We in-
troduce the first two techniques; we do not consider the last
technique in this paper because it has little effect on efficiency
of merging despite some shortcomings [7].

The first technique can be applied to I-Type instructions
except branches. An immediate table (IMM) is a 32-entry
table that stores the most common immediate values. If two
instructions have the same expressions in the fields other than
immediate, and both the immediate values exist in the table,
they can be merged.

[31:16]

inst

[15:0]

J3p0o2ag oL

Fig. 4. Extraction of instructions from the IRF in the original method.

The second technique is for I-Type branch instructions. In
these instructions, immediate values are parameterized with a
5-bit signed integer, which is sign extended to 16-bit, rather
than an index of the immediate table. An immediate value
in such an instruction means the PC-relative branch offset, or
the distance to the branch target. While it will be shortened
in consequence of instruction packing, it cannot get longer.
Therefore, when the instruction group corresponding to a
branch is listed in the IRF, once the immediate value can
be expressed in 5-bit, the branch is then treated as an IRF
instruction regardless of the subsequent recalculation of the
distance.

Fig. 4 shows how parameterized IRF instructions are re-
constructed in the original implementation with these two
techniques. The two inputs, inst and param, are retrieved
from specific fields of a packed instruction. The IRF and
the immediate table are 32-bit and 16-bit RAMs, respectively.
Both of them have 32 entries. SignExt means a sign extension
unit where the 5-bit parameter is sign extended to a 16-bit
immediate value. The upper 16 bits of an instruction read from
the IRF are used without modification; however, the lower
16 bits depend on which format the instruction is, whether
the corresponding entry is parameterized, and whether the
instruction has a parameter.

B. Shortcomings

The techniques for merging entries in the previously pro-
posed implementation mainly have two problems on efficiency,
which we discuss in this section.

The first problem is that these techniques can be applied
to only I-Type instructions. It is true that about a half of
executed MIPS instructions are I-Type, while it is not trivial
to decide the instructions to be listed in the IRF. The number
of IRF entries storing I-Type instructions is likely to affect the
efficiency of instruction merging.

Fig. 5 depicts the relation between the number of entries
in the IRF that contain I-Type instructions and the increase of
the ratio of executed (dynamic) IRF instructions. The X-axis
is the number of entries for I-Type instructions. The Y-axis
shows how many instructions become IRF-referable through
the parameterization. Points in the graph represent the results
of individual applications. The conditions for the evaluation
are the same as what we will describe in Section IV. The
correlation coefficient (R) of the two axes calculated from

_ 14
IS
o w 12 L 4
2 3
€S
®E 10
> 35
3 TS
‘2*58 g
== *e
c W
ocx 6 A4 L 4
E o * %0 o s00 o
&
3z’ e o
5 g A
£S5 2 A g $ r
=T ¢ L
£ o0 et o * 0, . .

0 4 8 12 16 20 24 28 32
of IRF Entries storing I-Type Instructions

Fig. 5. The number of I-Type IRF instructions vs. coverage improvement
(R =0.459)

these results was 0.459. Through the preliminary evaluation,
we confirmed that the number of IRF entries for I-Type varied
widely with applications and that it was well related to the
efficiency of merging. Consequently, we think that merging
techniques should be able to be applied to both I-Type and
R-Type instructions.

The second problem is the imbalance of the immediate
table between the efficiency and the hardware overhead. By
consulting IRF instructions parameterized with the immediate
table, we notice that most of the variation of immediate
values resides in the few lowest bits. In other words, there
is little chance that the table provides significant benefit over
just parameterizing with the 5 lowest bits. As a result, the
immediate table may not be worth its hardware cost, which is
about a half as large as the IRF.

III. XOR-BASED MERGING METHOD

In this section, we propose an XOR-based merging method
to improve the efficiency of instruction merging and there-
fore the efficiency of the IRF. From the discussion of the
shortcomings of the previous implementation, we think that an
efficient merging technique should be capable of being applied
to most of the instructions and be implementable with simple
hardware. Our method is designed so that it can meet both of
the requirements.

A. Coding of IRF Instructions

Fig. 6 shows the formats of IRF entries. We call these 36-bit
formats “codes” in this paper. Each code has additional 4 bits,
S, T, D, and I bits, as flags of parameterization. They determine
whether rs, rt, rd, and (the 5 lowest bits of) immediate fields
in the entry will be XORed with a parameter, respectively. R-
Type instructions use S, T, and D bits, and I-Type instruction
use S, T and I bits. J-Type instructions, j (jump) and jal
(jump and link), does not utilize any additional bits: they do
not benefit from parameterization. However, many of them can
be translated into I-Type unconditional branches (b and bal
pseudoinstructions, which actually are beqg and bgezal with
tautologies [8], respectively) and therefore some of them may

R-Type
Is|TIDl-][opcode | rs | rt | rd Jshamt] funct |
35 31 26 21 16 11 6 0
I-Type
IsIT]-11] [Lopcode | rs | rt] immediate]
35 31 26 21 16 0
J-Type
L1-1-1-] Lopcode | target]
35 31 26 [

Fig. 6. The format of IRF entry for each type of MIPS instruction.

addu $ve, $a0, $al

L o [a4]5s5]2
31 26|!21 llls 11 6 0

addu $vo, $te, $t1

[o [8] o] 2
31 26 21 16 1 6 0
G
addu $ve, $P, $[P~1]

[alajofo o] o | 2 | 2 | o | 33 |
35 31

26 21 16 11 6 0

parameterized fields

Fig. 7. Example: merging two instructions into a single IRF entry.

be included in the IRF instructions. The unused bits are set to
zero to keep the corresponding fields unchanged.

Fig. 7 illustrates an example of grouping two simi-
lar instructions, addu $v0, $a0, $al and addu $vO,
$t0, $tl. They differ in two source registers rs and rt. The
actual register numbers of rs and 7z in the former instruction
are 4 and 5, which can be expressed as 4 XOR 0 and 4 XOR
1, respectively. Similarly, those of the latter instruction, 8 and
9, can be described as 8 XOR 0 and 8 XOR 1, respectively.
We now introduce a pseudoinstruction of addu $v0, $P,
$[P"1] using a parameter P, where " is an XOR operator.
It is encoded in an IRF entry as described in the figure,
asserting S and T bits that correspond to rs and rt fields,
respectively. The former instruction can be retrieved from the
pseudoinstruction with a parameter 4, while the latter can be
retrieved with 8.

Along with the pseudoinstruction shown above, addu
$v0, $[P"4], $[P"5] is also a possible pseudoinstruc-
tion that coordinates the two addu instructions. In this case,
the parameters become 0 and 12. In general, there are 32
possible pseudoinstructions that differ in the corresponding
parameters from each other. We define the normalized form of
a code as the code the highest parameterized field of which is
zero. For example, the code for addu $v0, $P, $[P"1]
shown in Fig. 7 is a normalized form because the highest
parameterized field, or rs, is zero.

inst code [35:32]

IRF [31:26], [10:6]

v

19p023Q oL

[25:21]

5

[20:16]

5D

[16:11]

param

Fig. 8. Extraction of Instructions from the IRF in the proposed method.

B. Difference in Hardware Organization

Fig. 8 shows how IRF instructions are extracted in our
method in hardware. The bit length of the IRF is increased
from 32 bits to 36 bits to store the most frequent codes, rather
than instructions, in individual applications. The opcode and
funct fields are sent to the decoder without modification. The
other fields are selected by the corresponding flag bits from
either the value in the entry or the XOR of it and param.

We compare our merging method with the previous tech-
niques using Fig. 4 and Fig. 8. Even though our method
requires 4 extra bits per entry in the IRF, it only spends
a quarter of the 16-bit immediate table. In addition, though
selection logic is quite simple in both methods, when we
implement methods in an FPGA, our implementation may
enjoy additional benefit from an optimization of merging
an XOR and a selector into a single 3-input look-up table.
Therefore, we think that our method can be implemented with
smaller hardware than the previous implementation.

C. Selection of IRF Instruction Groups

There are eight normalized codes corresponding to each IRF
instruction (except J-Type) because the number of ways to
choose the flag bits is 2% = 8. Finding the optimal combination
of codes that maximizes the number of IRF instructions
executed or minimizes the size of the modified program is
too complex to complete in a realistic time. So we use a
heuristic, which is similar to a greedy algorithm that is used
in the original IRF proposal when indirect register specifiers
are applied [7].

Fig. 9 shows the algorithm for selecting a set of codes in
the IRF from an instruction profile that is gathered by static
analysis or dynamic profiling. Each instruction in the profile
has its occurrence rate. The function coding_candidates (in
lines 4 and 19) gives a set of all normalized codes for the
corresponding instruction. The function bit_concat (in line 17)
returns the bit concatenation of the inputs. The process of
generating IRF contents is as follows: Before the main loop,

: PROFILE < instruction profile
INSTS <+ empty associative array
: for inst in PROFILE except nop do
for code in coding_candidates(inst) do

if INST'S[code] does not exist then

append code to INSTS

end if

append inst to INSTS[code]
end for
10: end for
11: IRF[0] + code for nop
12: for ¢ in [1..31] do
13: find code that has the highest frequency of I N ST S[code]
14: flags < code[35..32]
15: def_inst < most frequent instruction in I N ST S[code]
16: IRF[i] < bit_concat(flags, def_inst)
17: for inst in INST S[code] do

LRI N R

18: for candidate in coding_candidates(inst) do
19: remove inst from I NSTS[candidate]
20: end for
21: end for
22: end for

Fig. 9. Pseudocode for selecting IRF entries.

it calculates the sets of instructions that belong to each of
the possible codes and stores to INSTS (lines 2 through 10).
Since the entry 0 is reserved for nop (line 11), the main loop
determines the 31 most common codes, rather than 32. In the
main loop, it first finds the code whose sum of frequency is
the highest in INSTS, that is, the most frequent code (line 13).
Then it sets the most frequent instruction in the code as a
default one, which is stored in the IRF (line 14 through 16).
As a result, default instructions, which are referenced without
a parameter, come to be extracted by setting param in Fig.
8 to zero. Lastly the instructions in the selected code are
excluded from the corresponding lists (line 17 through 21).
This exclusion can be skipped in the last iteration.

IV. EVALUATION

In this section, we compare the methods for merging in-
structions through evaluations. Two scales of efficiency are
measured: the dynamic frequency of IRF instructions being
executed and the decrease in the number of instruction fetches
from the cache. The former scale corresponds to the chance
of instruction packing. The latter is strongly connected to
reduction of fetch power.

A. Methodology

We use all of the 36 benchmarks of MiBench [9] and make
the instruction profiles from the traces of them. To get the
traces, we use a modified version of SimMips version 0.7.5
[10]. The benchmarks are compiled with gcc 4.7.3, uClibc
0.9.33.2, and binutils 2.21. The instruction set is MIPS32
Release 1 with floating point instructions. The compile options
are same as the defaults of MiBench except asserting a flag
for static compilation (-static). Some programs is slightly
modified so that compile errors due to the difference of
compiler versions may be removed.

We define three settings as follows:

e No Grouping stands for the IRF without any of the
instruction merging techniques. It is referred to for a
baseline of efficiency.

« Conventional applies two existing techniques that have
been described in Section II.

« Proposed utilizes the XOR-based merging that we have
introduced in Section III.

In the evaluation, there are three major limitations in in-
struction packing because of the selection of ISA or the ease
of the calculation. First, some R-Type instructions that require
both rs and shamt fields cannot be transformed into loosely
packed instructions. Most of them are floating point instruc-
tions [8]. Second, some I-Type instructions fail to express
their immediate values in 11 bits (See Fig. 2). It will cause
addition and modification of instructions and thus decreases
the efficiency of instruction packing. However, we do not
consider it because it is applied to all of the settings. Lastly,
we do not attempt to perform an iterative instruction packing.
Packing may shorten the distance to the target in a branch
and then some of the modified branch can be included by the
IRF instructions. Though it slightly improves the efficiency of
merging techniques, we think that the chance of improvement
is rarely different between Conventional and Proposed because
it is applicable to both of them.

B. Dynamic Frequency

We show the dynamic frequency of IRF instructions being
executed in Fig. 10. The X-axis is the name of a group of
MiBench. The Y-axis is the average of dynamic frequency in
the group. The rightmost average bars stand for the average
frequency of all the applications. The dark bars represent
coverage of the default (parameter-free) IRF instructions. Our
method improved the average frequency by 19.6% (or 10.5
percentage points) over the previous methods. In particular, in
the 7 traces of the Security benchmark group, the improvement
was as much as 46.7% (or 22.0 points) on average.

We think that the reasons why the Security benchmarks fit
in our method are twofold: One is their high proportions of
bit operations. Most of them have the R-Type format, which
cannot be parameterized in the previous methods. The other
is their high number of registers used in loops. Our method
can absorb the difference in register numbers. Therefore it
succeeded in merging many instructions into a few IRF entries.

C. The number of instruction fetches

Fig. 11 shows the reduction in the number of instruction
fetches over No Grouping. The X-axis is the same as that of
Fig. 10. The Y-axis is the average decrease of the number of
instruction fetches from the L1 cache. Our method reduced
the number of fetches by 4.8% over Conventional.

In the Automobile and the Network benchmark groups, our
method negatively affected the number of fetches (increased
by 0.5% and 3.4%, respectively). We think that the negative
effect comes from the decrease of the packing efficiency by
parameterized instructions. While a default IRF instruction can
be expressed in a single field in tightly packed instructions, a

100
90 __| M No Grouping

Conventional M Proposed I_

Dynamic Frequency of
IRF Instructions [%]
w
o

\é\\e’ 6@} \‘\0({'
N 3
& & & o & ®

N
9 S &
Group of Applications

Fig. 10. Improvement in dynamic frequency of IRF instructions. Light bars
represent IRF instructions with non-default parameters.

16%
14%
12%
10%
8%
6%
4%
2%
0% -
-2%
-4%

H Conventional

M Proposed

Reduction in the number of
Instruction Fetches

Group of Applications

Fig. 11. Reduction in the number of instruction fetches. All values are
relative to No Grouping.

parameterized instruction requires two fields. If the number
of required fields in continuous IRF instructions increases,
additional packed instructions may be inserted. Fig. 12 shows
the difference between Conventional and Proposed in instruc-
tion packing of the most frequently executed loop in the gsort
benchmark. Instructions with a circle and two circles stand for
parameter-free and paramterized IRF instructions, respectively.
In Conventional, all the instructions were referenced without
parameters and the number of required fields in the loop was
8. The loop became only two tightly packed instructions.
In Proposed, on the other hand, some instructions got to
require parameters as a result of merging and the number of
required fields became 11. Therefore, our method decreased
the efficiency of packing in this case because the loop could
not be expressed by two packed instructions. The result in Fig.
10 surely showed that our method decreased the frequency of
default IRF instructions being executed. We might improve
the algorithm for selecting codes by carefully checking the
negative effect of merging multiple frequent instructions.
Nevertheless, our method showed remarkable decrease of
fetches (12.8% on average) in the Security benchmarks. The
number of continuous IRF instructions in major loops was
drastically increased there. For example, Fig. 13 shows the
difference in instruction packing of a part of the AES encryp-

Conventional Proposed
r O lbu $a0, 0($s2) O]
O 1lbu $a1, o(3$s3) QOO
O addiu $ve, $ve, -1 QO

O sb $a1, o($s2) O h
. O sb $a0, 0($s3) QOO]
r O addiu $s2, $s2, 1 O

O bnez $vo, -24 @) a
L O addiu $s3, $s3, 1 o]e)

Fig. 12. The difference in instruction packing in the gsort benchmark.

Conventional Proposed
addu $t3, $ve, $t3 OO0 7
]: @) s1l $t7, $t7, ox2 @)
addiu $t1, $t1, 768 o0 |
addu $s3, $vo, $s3 ©]0)
sll $t6, $t6, ox2 ©]0) :I
OQ addiu $t2, $t2, 768 OO0 7
I: addu $s2, $vO, $s2 OO0 |
O s1l1 $t5, $t5, ox2 OO]
addiu $s1, $s1, 768 O
1w $s4, 0(s4) o0

Fig. 13. The difference in instruction packing in the rijndael benchmark.

tion routine in the rijndael benchmark. The previous method
did not leverage the similarities of instructions, though some
instructions were loosely packed. With our method, most
of the instructions in the routine were able to be retrieved
from the IRF and compressed into tightly packed instructions.
Although we do not evaluate the fetch power itself, judging
from these results, we think that our method make a significant
contribution to fetch power savings.

V. CONCLUSION

This work proposed an XOR-based instruction merging
scheme, which efficiently utilizes the limited capacity of the
IRF to reduce the power consumption of instruction fetch
logic. According to our evaluation results, 19.6% more instruc-
tions were fetched from the IRF, the number of instruction
fetches was decreased by 4.8% compared to the previous
approach.

The following items are left for future studies. First of
all, the power consumption of instruction fetch should be
investigated more precisely. It is also important to apply our
scheme, which is heavily dependent on MIPS ISA, to other
ISAs.

REFERENCES

[1] J. Montanaro et al., “A 160-MHz, 32-b, 0.5-W CMOS RISC micro-
processor,” IEEE Journal of Solid-State Circuits, vol. 31, no. 11, pp.
1703-1714, 1996.

[2] K. D. Kissell, “MIPS16: High-density MIPS for the Embedded Market,”
Silicon Graphics MIPS Group, Tech. Rep., 1997.

[3]

[4

=

[5]

[6]

[7]

[8]
[9]

[10]

A. Shrivastava, P. Biswas, A. Halambi, N. Dutt, and A. Nicolau,
“Compilation framework for code size reduction using reduced bit-
width ISAs (rISAs),” ACM Transaction of Design Automation Electronic
System, vol. 11, no. 1, pp. 123-146, 2006.

J. Kin, M. Gupta, and W. H. Mangione-Smith, “The filter cache: an
energy efficient memory structure,” in Proceedings of the 30th annual
ACM/IEEE international symposium on Microarchitecture, 1997, pp.
184-193.

L. H. Lee, B. Moyer, and J. Arends, “Instruction fetch energy reduction
using loop caches for embedded applications with small tight loops,”
in Proceedings of the 1999 international symposium on Low power
electronics and design, 1999, pp. 267-269.

R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,
“Scratchpad memory: design alternative for cache on-chip memory in
embedded systems,” in Proceedings of the tenth international symposium
on Hardware/software codesign, 2002, pp. 73-78.

S. Hines, J. Green, G. Tyson, and D. Whalley, “Improving Program
Efficiency by Packing Instructions into Registers,” in Proceedings of the
32nd annual international symposium on Computer Architecture, 2005,
pp. 260-271.

D. Sweetman, See MIPS Run Linux Second Edition. Morgan Kaufmann,
2006.

M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in 2001 IEEE International Workshop on Workload
Characterization, 2001, pp. 3—14.

N. Fujieda, S. Watanabe, and K. Kise, “A MIPS System Simulator
SimMips for Education and Research of Computer Science,” IPSJ
Journal, vol. 50, no. 11, pp. 2665-2676, 2009.

