Masatomo IWASA
A little twoos
Research Interests
- Self-organization
- Collective behavior of interacting chemotactic elements.
- Swarm oscillator model.
- M. Iwasa,
Role of the internal degree of freedom of particles in cluster formation,
Physical Review E 102 062202 (2020).
- M. Iwasa and D. Tanaka,
Mechanism underlying the diverse collective behavior in the swarm oscillator model,
Physics Letters A 381 3054-3061 (2017).
- M. Iwasa, K. Iida and D. Tanaka,
Various collective behavior in swarm oscillator model,
Physics Letters A 376 2117-2121 (2012).
- M. Iwasa, K. Iida and D. Tanaka,
Juggling motion in a system of motile coupled oscillators,
Physical Review E 83 036210 (2011).
- M. Iwasa and D. Tanaka,
Dimensionality of clusters in a swarm oscillator model,
Physical Review E 81 066214 (2010).
- M. Iwasa, K. Iida, and D. Tanaka,
Hierarchical cluster structures in a one-dimensional swarm oscillator model,
Physical Review E 81 046220 (2010).
- Biophysics
- Cell migration.
- S. Huda, B. Weigelin, K. Wolf, K. V. Tretiakov, K. Polev, G. Wilk, M. Iwasa, F. S. Emami, J. W. Narojczyk, M. Banaszak, S. Soh, D. Pilans, A. Vahid, M. Makurath, P. Friedl, G. G. Borisy, K. Kandere-Grzybowska and B. A. Grzybowski,
Levy-like movement patterns of metastatic cancer cells revealed in microfabricated systems and implicated in vivo,
Nature Communications 9 4539 (2018).
- R. Ishiwata and M. Iwasa,
Extracellular and intracellular factors regulating the migration direction of a chemotactic cell in traveling-wave chemotaxis,
Physical Biology 12 026004 (2015).
- Cell population dynamics.
- Sumo (相撲); biomechanics in sports science.
- Asymptotic analysis
- Singular perturbation methods.
- Lie symmetry analysis of differential and difference equations.
- Renormalization group method.
- M. Iwasa,
Derivation of Asymptotic Dynamical Systems with Partial Lie Symmetry Groups,
Journal of Applied Mathematics 2015 505281 (2015).
- M. Iwasa,
Reduction of Dynamics with Lie Group Analysis,
Advances in Mathematical Physics 2012 505281 (2012).
- H. Chiba and M. Iwasa,
Lie equations for asymptotic solutions of perturbation problems of ordinary differential equations,
Journal of Mathematical Physics 50 042703 (2009).
- M. Iwasa,
Solution of reduced equations derived with singular perturbation methods,
Physical Review E 78 066213 (2008).
- M. Iwasa and K. Nozaki,
Renormalization group in difference systems,
Journal of Physics A: Mathematical and Theoretical 41 085204 (2008).
- M. Iwasa and K. Nozaki,
A Method to Construct Asymptotic Solutions Invariant under the Renormalization Group,
Progress of Theoretical Physics 116 605-613 (2006).
Contact
Science Division,
Center for General Education,
Aichi Institute of Technology,
1247 Yakusacho Yachigusa, Toyota 470-0392, Japan,
E-mail : miwasa(at)aitech.ac.jp