ORP電棌橹出器／FIA法による漂白液の過酸化水素濃度測定法

前嶋義夫，乾 拓雄，坂井亜紀＂，辺見彰秀＂，伊東 暂＂浅野秦一•，今任稔彦 ${ }^{*}$

Flow Injection Analysis of Hydrogen Peroxide in the Bleaching Solution Using a Flow－through Type ORP Electrode Detector

Yoshio MAESHIMA，Takuo INUI，Aki SAKAI＊，Akihide HENMI＊，Satoshi ITO＊， Yasukazu ASANO＊and Toshihiko IMATO＊

Hamamatsu Industrial Reserch Institute
： 4950 Tsudacho Hamamatsu－shi，Shizuoka，431－21
＊DKK Corporation ：4－13－14 Kitamachi Kichijoji Musashino－shi，Tokyo 180
＊＊Kyushu University ：6－10－1 Hakozaki Higashi－ku Fukuoka－shi，Fukuoka 812

Flow injection analysis of hydrogen peroxide in bleaching solution using a flow－through type ORP electrode detector is described．A flow system with two channels of stream was used．

A sample solution（ $5 \mu \mathrm{l}$ ）was injected into a water stream（ $0.9 \mathrm{ml} / \mathrm{min}$ ）and was merged with a stream of the redox potential buffers $(0.9 \mathrm{ml} / \mathrm{min})$ consisted of 0.02 MFe （III）-0.02 M Fe （II）$/ 1.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ ．

The concentration of the hydrogen peroxide was determined by the potential change of detector，which was observed as a peak－shaped signal．The calibration curve of hydrogen peroxide showed linearity in the range of $0.6 \sim 6.8 \%$ in peak height．The correlation between the FIA method and the JIS method（Potassium－ Permanganate Titration Method ）showed good agreement with a coefficient of correlation of 0.999 ． 15 samples could be determined in an hour．

This FlA method was tested to monitor concentration of hydrogen peroxide of the bleaching solution in a dyehouse with successful results．

過酸化水素は，綿などの酸化漂白剤として次亜塩素酸ナトリウム，亜塩素酸ナトリウム とともに広く使われている。特に綿の連続精練漂白工程では，過酸化水素酒白は最も普及 している方法である。多品種小ロット加工が一般化するにつれて，染色工場では連続精練漂白工程の漂白剤潧度管理の迅速化，自動化が求められるようになり，過マンガン酸カリ ウム滴定法を応用した自動測定装置の導入が一部で進みつつある。しかし，この袋置は高価なことと測定に時間を要することから，我々は安価で簡便な過酸化水素モニタの開発を目的として，細管中の酸北還元緩衝液の流れの中に連続的に過酸化水素を注入し，その結果として生じる酸化還元電位の変化を酸化適元（ORP）電極検出器で愌出するフローインジ ェクション分析法（FIA）を検討した ${ }^{1)}$ 。

このORP電晸検出器ノFIA法は，酸化還元系電位褑㣫液の流れを利用する新しい酸化逜元物質の定量法で，次のような特徵がある2131451617）${ }^{(1)}$ 。
（1）綏衝液を使うことによりORP電極は安定なベースライン電位を示す。その結果，微小の電位変化を感度良く捡出できる。
（2）電極虑答が速く，再現性が良好である。
（3）綬㣫液濃度の調整により，亟めて広い懐度範囲の分析が可能である。
（4）電㮀に直接応答しない戌分の間接分析が可能である。
今回我々は，Fe（II）－Fe（II）系電位緩衝液を用いて，過酸化水素モニタとして利用する ための特性，適応性について，基礎的な㭲討と染色工場での現場試験を行った結果，従来 の過マンカン酸カリウム滴定法と比較して，ほぼ満足する結果を得たので報告する。

2．実験及び結果

2．1FIAシステム

実験は図1に示すような 2 流路FIAシステムで行った。一方の流路に酸化還元滋電位緩衝液を流し，他方の流路に試料のキャリアとして水を流した。流量はそれぞれ $0.9 \mathrm{ml} / \mathrm{min}$ とし，電位鋖衛液は硫酸鉄（III）アンモニウム 12 水和塩，硫酸鉄（II）アンモニウム6水和塩，硫酸で， 0.02 MFe （III）-0.02 MFe （II）$/ 1.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ 溶液を調整した。ループインジェ クタの注入量は5 μ l，混合コイルは 0.5 mm ．ID×7mのテフロンチューブを用いた。電極用フローセルは図2に示すものを用い，電位差の測定にはDKK製10L－50型イオンメータを使用した。

2.2 電亟材料

酸化還元電位検出用の電極材料としては，白金，金，グラシカーボンが考えられる。こ れらの電極材料を図2の0RP電極の先端に組み込んで比較した。その結果は，図3に示す
明らかになった。


```
RS：関位経街液 \(0.02 \mathrm{MFe}^{3+}-0.02 \mathrm{MFe}^{2+} / 1.2 \mathrm{KH}_{2} \mathrm{SO}_{4}\)
（ \(0.9 \mathrm{~m} / \mathrm{min}\) ）
CS：イオン交挨水（0．9日1／日in）
1 ：サンブル注人器 レ゙ダイン慜7125型（ \(5 \mu 1\) ）
```



```
A：イオンメータ DKK䁈IOL－50
R：䟕録都 Łコニック製250F M：混合コイル（ 700 cmPIFE ）
```

図1 FIAシステム

図2 電極用フローセル

2.3 検量線

グラシカーボン電極を使い電位緩衝液の濃度を変えて，漂白液用の檢量線の成立する濃度䋃囲を検討した。電位緩菙液は硫酸第二鉄アンモニウムと硫酸第一一鉄アンモニウムの等 モル混合液の濃度を，0．01 M Fe（III）－ 0.01 MFe （II）$/ 1.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}, ~ 0.02 \mathrm{M} \mathrm{Fe}$（III）－ 0.02 MFe （II）／ $1.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}, ~ 0.05 \mathrm{MFe}$（四）-0.05 MFe （II）／ $1.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ とした。結果は図4のように，滞度が高くなるほど過酸化水素濃度に対応した電位差は小さくなる。 しかし $0.02 \mathrm{M} / 1: 2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ の時に過酸化水素濃度が 0.6% から 6.8% の間で，FIA信号（電位差）のピーク高さと濃度の関係は直線が得られ，漂白液に対して最適濃度である ことが分かった。この検量線を図5に示す。

2．4 FI A 信号の再現性
過酸化水弄濃度が 0.62% ， 1.24% ， 3.11% ， 5.00% ， 6.83% の時， 4 分每に 5 回測定を繰り返した場合のFIA信号の精度は，相対磦準偏差で示すとそれぞれ0．9 \％， 0.81 $\%, ~ 1.31 \%, ~ 0.61 \%, ~ 0.59 \%$ であった。この澴度範囲での本法の測定精度は，相対標準偏差で1 \％以下であると推察される。

2.5 共存物質の影響

棉，ポリエステル／綿の連続精練漂白では，布を表1に示すような組成の漂白液に浸潰 して盷和させた後，スチーマで30分ほど蒸熱処理される。漂白液粗成は過酸化水票のほか は，染色工場によってそれぞれ異なる助剤を使用しているが，代表的な助剤について本測定法に与える影響を調べた。

結果は表2に示すように，金属イオン封鎖剂のEDTA，ビロりん酸ナトリウムが負の測定誤差を与えた。これらは鉄や銅と安定な錯体を形成することによって，過酸化水案の急湤 な分解による綿の脆化を防ぐ目的で用いられる。しかし，電位綬㣫液のFe（II）とFe（II ）とも錯体を形成し，Fe（眐）錯体の安定性がFe（II）錯体よりも高いため，員の誤差を生したものと推察される，しかし，これらの実用濃度は 0.5% 以下であるため，実際の測定においてはほとんど影響がないものと考えられる。その他の金属イオン封鎖剤やアル カリ，過酸化水素安定化剤，界面活性剤は本測定に影響がなかった。過酸化水蔂安定化剤 のけい酸ナトリウムは直接的には妨害しないが，電位褑衝液の硫酸酸性が強いためにけい酸がゲル化し，チューブの詰まり，電㮀表面へのスケールの付着などの悪影䍌を与えやす い。

2.6 回収実験

榎準添加法により，漂白液の共存成分に対する選択性について㯖討した。染色工場加ら サンブリングした漂白液を過マンガン酸カリウムで滴定し，その分析値を基準として過酸化水素䅺準液を計算量添加し，これを本法で分析して計算値と比較した。その結果，本法 は計算値に対して8 \％低い値となったが，FIA信号は添加濃度に対して図6のように直線的に増加しており，漂白液中の助剂等の共存成分は本質的には本法に妨害を与えないもと考えられる。

図3 電極材料の避い

図4 電位杸衝波䍚度の迢い

表1 漂白液組成の一例

過酸化水素	0．5～4
水酸化ナトリウム	0.2
道酸化水梁安定則	0.7
金属はオン封繝	0.7
界面活妵剂	0.2
pH	10.7

図5 検鲎線

2.7 過マンガン酸カリウム滴定法との相関性

漂白液に過酸化水素標準液を添加して5試料を調整し，これらを過マンガン酸カリウム滴定法（JIS法）4）と本法で分析して両法の相関性を調べた。秸果は図7に示すように，回师式 Y＝1．08X－0．51，相関係数 0.999 の直線が得られ，本法はJIS法とも比較的良く一致した。

図6 標樂添加法

図7 FIA法とJIS法（KMnO」滴定法）の相関

共存物贅		主 成 分	溉 退	
$\begin{aligned} & \text { 㙁 } \\ & \text { 甚 } \end{aligned}$	水酸化けトリガ（試欹）	KaOH	0．5．5\％	0%
	り 九酉三けリリカ（工集用）	$\mathrm{Na}_{3} \mathrm{PO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}$	0．5．5\％	0%
$\begin{aligned} & \text { 晏 } \\ & \text { 定 } \\ & \text { 漒 } \end{aligned}$	\＄才V－ト PLC－7000（日举化学）		0．5．5 \％	0%
	けい酸圤り」（工桨用）	$35 \times \mathrm{SiO}_{2}$	1，4，8，10 \％	0%
		ブホン䒺高分予化合物	0．5，\％	0\％
	fabor HC（洛桃化成）	アミカガボン酸监	0．5，5\％	0%
			0．5．5 \％	08
			50%	－11．9 \％
	EDIA（試淢）	和物	1\％	－2．8\％
			48	－7．6\％
			8 \％	－16．4 \％
			10%	-22.5%
	ビ呵ん酸トトリガ（式你）	$\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7} \cdot 1 \mathrm{OH}_{2} \mathrm{O}$	0．5\％	0\％
			1\％	－4．5\％
			3%	-11.4%
			5 \％	－18．2\％
哭面活珄新		にす系，アニす系活珄対	0．5，5\％	0%
	「「 χ Y YS（染東化成）	にすン系，アニず系活生則	0．5．5 \％	08
	ダ体－7 LF（第一工梁）	アコン系活铑阴	$0.5 .5 \%$	0%
	Hostapon Tpdr．h／c（Hoechst）		0.5 .5 \％	0%

制㟨湤族度	ベース或位㩊化 s＊${ }^{\circ} \mathrm{C}$	$1 \% \mathrm{H}_{2} \mathrm{O}_{2}$ 酸位䓖の妾化	
		v＊／${ }^{\circ} \mathrm{C}$	相対値： \％／＂C
0．02K	1.2	0.4	1.5
0．15M	1.1	0.06	0.8

＊ 20 C の被位盖に対する変化率

2.8 温度の影響

緩衝液の酸化迋元電位は，温度の影罪を受ける。混合コイルとフローセルを $10{ }^{\circ} \mathrm{C}, ~ 20$ ${ }^{\circ} \mathrm{C}, ~ 30^{\circ} \mathrm{C}, ~ 40^{\circ} \mathrm{C}$ の恒温水槽に浸漬して，ベース電位の変化と1 \％過酸化水素の電位変化を調べた。結果は表3のように，綬衝液濃度が 0.02 MFe （II）－ 0.02 MFe （II）／ 1.2 M $\mathrm{H}_{2} \mathrm{SO}_{4}$ の時，ベース電位の変化は $1.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ となり， 1% 過酸化水素の電位差の変化は 20
 $\mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ の時にはこれより若干小さい値となった。これらのことから，モニタとして使用 ずる場合には検出部の温度制御が必要である。

2.9 染色工場における測定

染色工場におけるモニタとしての現場試験を行った。連哱精練漂白機のサチュレータか ら漂白液をサンプリングし，䄪 4 分毎に試料を注入した。蕞準液を1時間毎に注入し，感度特性の复化をチェックした。漂白液は織䊒質の固形分を多く含み，インジェクタやチュ一づの目詰まりを起こし易いため，サンプリングは一次系と二次系に分け，それぞれに石英ウールのフィルタを設けた。混合コイルとフローセルは $25^{\circ} \mathrm{C}$ の恒温水槽に浸漬した。測定結果を図8に示す。

7 時間の測定の間ベース電位は安定し，標準液の再現性も良く，信頼性の高いデータを得ることができた。この間，加工布はブロード，ビエラ，ツイルと変化し，1ロットの平均加工時間は40分ほどであった。サチュレータ前後のマングルの就り率の差に相当する量 の酒白液が布に付与されて持ち出される。そのため，作業者はサチュレータの液面の高さ を監視しながら，それに等しい量の漂白液を常時補充しており，測定データと加工内容を検討して興味ある結果が得られている。

図8 架色工場における刑定例

3．おわりに

安価で簡便な過酸化水素モニタの開発を目的として，ORP電極检出器FIA法を検討 した。その結果，本法は作業現場における工程管理用を目的とした漂白液の簡便なモニタ として適用が可能であることが明らかになった。本法は過酸化水素の他に，次亜程素酸け トリウム，亜塩素酸ナトリウム，過硫酸程等の酸化物も測定対象とすることができ，今後 はこれらをも含めた蔡剤懐度モニタの実用化に向けて，検討を続ける予定である。

参考文献

1）坂井亜紀，辺見彰秀，伊東哲，浅野秦一，山下直，乾拓雄，前嶋義夫，今任稳彦 优貫義十，第16回フローインジェクション分析講演会講演要旨集，23（1992）
2）大浦博廚，今任稳彦，山崎澄雄，石橋信彦，J．Flow Injection Ana1．，Vol．8，No．1，2（1991）
3）大浦博樹，今任稳彦，山崎澄雄，石橋信度，分析化学，35，349（1986）
4）H．Ohura，T．Imato，S．Yamasaki and N．Ishibashi，Anal．Sci．，3， 453 （1987）
5）N．Ishibashi，T．Imato，H．Ohura and S．Yamasaki，Anal．Chim．Acta，214， 349 （1988）
6）大浦博樹，今任稔彦，浅野泰一，山崎澄雄，石橋信彦，分析化学，37，T105（1988）
7 H．Ohura，T．Imato，S．Yamasaki and N．Ishibashi，Ana1．Sci．．6， 777 （1990）
8）N．Ishibashi，T．Imato，H．Ohura and S．Yamasaki，Anal．Chim．Acta，261， 405 （1992）
9）工業用水試験方法 JIS K 0102－1987，

