J. Flow Injection Anal., Vol. 7, No. 2(1990)

フローインジェクション分析法による
 グアナーゼ注合性の測定
 友田正子,内田和秀,樋口誠彦,佐治京子,斎藤真一
 上智大学理工学部一般科学研究室
 〒 102 千代田区紀尾井町7-1
 防衛医科大学校麻酔学教室
 〒 359 所沢市並木3-2

Flow Injection Analysis for Guanase Activity

Masako Tomoda, Kazuhide Uchida^{*}, Nobuhiko Higuchi, Kyoko Saji, and Shin-ichi Saito

Department of Natural Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102 Department of Anesthesiology, National Defense Medical College, 3-2 Namiki, Tokorozawa-shi, Saitama 359

A more simple and convenient method for the determination of guanase activity was established using FIA. This new flow method is based on measuring the hydrogen peroxide formed by guanase and coupled enzymes: xanthine oxidase and uricase. FIA system is made up of series injection method, stopped flow method and merging zone method. A good linear relationship (r = 0.9999) was obtained for the standard curve between the activity of guanase (37 °C, 0 - 1.84 Ul⁻¹) and the absorbance. The reproducibility was good (RSD < 1 %, n = 10) and the mean recovery was 97 %. Since the endogenous xanthine and uric acid in each biological sample can be eliminated completely in the FIA system, a blank test was not needed. This method allows relatively rapid analysis, because forty samples can be treated during about 6 hours.

1. 緒 言

グアナーゼ(Guanase; Guanine deaminase)は、グアニンを脱アミノ化してキサンチン とアンモニアに分解する核酸代謝系酵素で、1932 年 Schmidt¹⁾が初めて家兎の肝ホモ ジネート中に発見したものである、1963 年 Passanenti²⁾が肝疾患時に血清中のグアナ ーゼ活性が上昇することを見いだして以来、肝機能検査として血清グアナーゼ活性が臨 床的に有意義であることが数多く報告されている.3-5) グアナーゼのヒトにおける臓器 分布は肝、腎、脳に多く存在することが知られており、従来から肝機能検査の代表的な 項目である GOT (Glutamic oxaloacetic transaminase), GPT (Glutamic pyruvic transaminase)が肝以外に骨格筋,心筋,膵などにも比較的多く存在して急性心筋梗塞 や筋疾患でも増加するのに対し、グアナーゼは増加せず、これらの酵素よりも肝に特異 的であることが報告されている.3) しかし、血清中のグアナーゼ活性は正常人において 極めて低く、そのためその活性測定には高感度が要求される.⁶⁾ グアナーゼの測定法と して , 基質に 8-アザグアニンを用いて生成するアンモニアを直接測定する方法, ^) グ アニンを基質としてキサンチンオキシダーゼ(XOD)反応時に生じるO。の還元作用を 利用する方法,⁸⁾ アイソトープを用いる方法,⁸⁾ XOD 及びウリカーゼ,ペルオキシダー ゼ(POD) 共役系により生成した過酸化水素を定量する方法10-12) などが報告されてい る.13) 最近ではグアナーゼ活性測定用酵素キットが発売されており,取扱いが難しい とされる酵素の試薬調製も安全かつ迅速に行うことができる。しかしながら、これらの 方法は操作上まだ煩雑であったり、精度に難点を有しているものもあり、日常検査には 適応しがたい面がある、著者らは、グアナーゼ活性測定をフローインジェクション分析 法(FIA法)に応用することを試みたので報告する.

2.実験

は読むと

2.1.反応経路

反応経路を Fig. 1 に示す. Step 1 で内因性キサンチン類及び尿酸により生成する 過酸化水素をカタラーゼにより分解する. この段階で内因性物質による妨害を消去する. Step 2 ではグアニンを基質としてグアナーゼを作用させ,生成するキサンチンから Step 1 の反応(a)(b) と同じ過程で2分子の過酸化水素を生成させる. 生成した過酸 化水素によりペルオキシダーゼの作用でメチルベンゾチアゾリノンヒドラゾン(MBTH) とN-エチル-N-スルホプロピル-m-アニシジン(ESPAS)を酸化縮合させ,インダミン色 素(赤紫色)に導く. 従ってグアナーゼ活性は過酸化水素濃度に直接比例し,グアナー ゼ標準液の検量線より活性値が定量可能である.

2.2.装置

ボンプ: Gilson製 minipuls-2 型ペリスタ式ボンプ(A法), あるいは日本精密科 学製SP-D-2501 プランジャー型ボンプ(B法)を用いた.

サンプルインジェクター:協和精密製 KMM-6V-4 型(A法)あるいは KMM-6V-2 型(B法)を用いた. Step 1: Elimination of endogenous compounds

Hypoxanthine +
$$0_2$$
 + H_20 $\xrightarrow{\text{Xanthine oxidase}}$ Xanthine + H_20_2
Xanthine + 0_2 + H_20 $\xrightarrow{\text{Xanthine oxidase}}$ Uric acid + H_20_2 (a)
Uric acid + 0_2 + $2H_20$ $\xrightarrow{\text{Uricase}}$ Allantoin + $C0_2$ + H_20_2 (b)
 $2H_20_2$ $\xrightarrow{\text{Catalase}}$ 0_2 + $2H_20$

Step 2: Determination of guanase

Guanine + $H_2O \xrightarrow{Guanase} Xanthine + NH_3$

Reaction (a)

Reaction (b)

Table 1 Reagent system

Reagent 1	0.01 U/ml	Xanthine oxidase
(R ₁)	0.5 U/ml	Uricase
-	6 U/ml	Superoxide dismutase
	14 U/ml	Catalase
	1.25 U/ml	Peroxidase
	2 U/ml	Ascorbate oxidase
	0.05 M	Phosphate buffer (pH 7.4)
Reagent 2	200 µM	Guanine
(R ₂)	200 µM	3-Methyl-2-benzothiazolinonebydrazone (MPTH)
	1 mM	N-Ethyl-N-(3-sulphopropyl)-m-anisidine (ESPAS)

切り換えバルブ及びプログラムタイマー:日本精密科学製 NV-508-2-6 型自動二連六 方バルブを,同社製 PP-1100 型プログラムタイマーにて制御した.

検出器:日本分光製 UVIDEC-340 型分光光度計に FIC-36 型フローセル(光路長: 10 mm, セル容量: 20 mm³)を取り付け, 波長 570 nm で測光した.また, メチルオレ ンジによる試験において, 塩酸溶液では波長 510 nm を, 水溶液では 460 nm を用いた.

恒温槽:三陽理化機器製 SYK-382-M 型恒温槽を使用した.

記録計:理研電子製 SP-G12 型記録計を用いた。

2.3. 試薬と試料

試薬調製の迅速化のために小野薬品工業製グアナーゼ測定用酵素キット(ダイヤカラーGUA)を利用した。キット内容を Table 1 に示す。これらは常に4℃で保存した。 界面活性剤を除く試薬は特級品を用い、水は日本ミリポア製 Milli-R0 及びMilli-Q システムで精製した超純水を使用した。

グアナーゼ標準液は、各ロット毎に活性値が表示された小野薬品工業製ダイヤカラー GUA用グアナーゼ標準品を用いた、これを生理食塩水で適当に希釈して、活性系列を 調製した。

内因性物質の影響を検討する目的で、以下に調製法を示す各母液を生理食塩水で希釈 し、10 mg d1⁻¹ キサンチンまたは 20 mg d1⁻¹ 尿酸を含む 1.25 U1⁻¹(A法)及び 2.45 U1⁻¹(B法)グアナーゼ試料及び同濃度グアナーゼ・ブランク試料を調製した.

2.3.1.A法での母液の調製

キサンチン 5 mg あるいは尿酸 10 mg を,各々 0.1 M 水酸化ナトリウム溶液 1.0 または 2.0 cm³ に溶解し,0.1 M リン酸カリウム緩衝溶液(pH = 7.4)を加えて全量 を 10 cm³ とした.

2.3.2.B法での母液の調製

キサンチンナトリウム 25 mg を水に溶解,あるいは尿酸 22 mg を 0.12 %(w/v) 炭酸リチウム水溶液に溶解して、全量を 10 cm³ とした.

2.4. 流路及び試料注入法

シリーズインジェクション法とマージングゾーン法を組み合わせたA法(Fig. 2)と 更にストップトフロー法を組み合わせた改良法(B法, Fig. 3)を設計した.A法,B 法共に酵素反応を円滑に進行させるために,各コイルを恒温槽にて加温した.また,気 泡による測定妨審を防ぐために背圧コイル(PC₃)を取り付け,キャリヤー使用前に 脱気した.

A法はポンプ(P)によって送液されるキャリヤー(C1)中にサンプルインジェク

ター (V_1)を用いて試料(S)と酵素試薬(R_1)を,キャリヤー(C_2)中に基質発 色試薬(R_2)をそれぞれ注入する、 V_1 には、S, R_1 及び R_2 が同時に注入できるよう に四連六方バルブ¹⁴⁾を用い、Sと R_1 が混合コイル(M_1)中で完全に反応するように、 Sを R_1 ではさむシリーズインジェクション^{15,16)}を取り入れた、S, R_1 及び R_2 体積 は、 V_1 に取りつけたループ容積とバルブ内の死体積(デッドボリューム)との和とし た、S注入体積は機械的に可能な最少量 50 mm³ に固定した、また、注入方法はオーバ ーフロー法¹⁷⁾を用い、総注入量は 200 mm³ とした、Sと R_1 は M_1 中で Fig. 1 で示 した Step 1 のように反応し、内因性のキサンチン類及び尿酸が消去される、次に合流 点(X)で R_2 と合流し、反応コイル(M_4)中で Step 2 の反応が進行する.

 C_1 and C_2 : Carrier solution (0.05 M KH₂PO₄ - NaOH buffer, pH = 7.4 and 6.0, containing 1.2 %(v/v) Triton X-100); P: Peristaltic pump; V_1 :;Injector, the synchronized system using four circuits of six-way valves; S: Sample (injection volume = 50 mm³); R₁: Enzyme solution (consisting mainly of XOD, UOD, catalase and POD, injection volume = 350 mm³); R₂: substrate and color reagent solution (consisting mainly of gluanine, MBTH and ESPAS, injection volume = 200 mm³); M: Mixing and reaction coil (0.5 mm id, M₁ = 32 m, M₃ = 20 m, and M₄ = 36 m); B: Water bath at 45 °C; D: Detector, spectrophotometer fixed flow cell, λ = 570 nm; PC₃: Back pressure coil (0.25 mm id x 0.15 m); W: Waste, Flow rate: C₁ = 0.5 cm³min⁻¹, C₂ = 0.3 cm³min⁻¹.

Fig. 2 A flow diagram of A method with series injection method

 C_1 and C_2 : Carrier solution (0.05 M KH₂PO₄ - NaOH buffer, pH = 7.4 and 6.0, containing 1.2 %(v/v) Triton X-100); P:' Plunger pump; PC₁ and PC₂: Pressure coil (0.25 mm id x 8 m and 12 m); V₁: Injector; S: Sample (injection volume = 50 mm³); R₁: Enzyme solution (injection volume = 350 mm³); V₂: Automatic a pair of six-valve systems (controled by program timer); R₂: Substrate and color reagent solution (injection volume = 250 mm³); M: Mixing and reaction coil (0.5 mm id, M₁ = 14 m, M₂ = 1 m, M₃ = 3.1 m, M₄ = 36 m); B: Water bath at 45 °C; D: Detector, spectrophotometer fixed flow cell, λ = 570 nm; PC₃: Back pressure coil (0.25 nm id x 0.15 m); W: Waste, Flow rate: C₁ = 0.5 cm³min⁻¹, C₂ = 0.3 cm³min⁻¹.

Ι

II

Fig. 3 A flow diagram of B method with series injection, stopped flow and merging zone methods (upper) and connection ways of V₁ and V₂ (lower)

B法は M_1 中で進行する Step 1 の反応を更に完全にする目的及び感度低下を防ぐ目 的で、ストップトフロー法を導入した. V_1 によりSと R_1 を C_1 中にシリーズインジェ クションし、丁度 M_1 におさまった時点(T_1)で自動二連六方バルブ(V_2)を作動さ せ(Fig. 3、 $\Pi \rightarrow I$)、一定時間(T_2) M_1 中に滞留させる。その間に R_2 をループ中 に充填させる.次に V_2 を作動させて($I \rightarrow \Pi$)、Sと R_1 の混合液が再び流れ出す時点 で、 R_2 が C_2 中に注入される.

2.5.A法における最適条件の検討

2.5.1.M₄長の検討

 $M_1 = M_3 = 2 m (0.5 mm i.d.), R_1 = 100 mm^3, R_2 = 200 mm^3, T = 37 °C, 両キャリヤー流量(FC₁, FC₂) = 0.5 cm³min⁻¹ 及びC₁, C₂組成共に 0.6 % Triton X-100を含む 0.1 M リン酸ーカリウム/水酸化ナトリウム緩衝液(pH = 7.4)に固定し, M₄を 18 ~ 24 m (0.5 mm i.d) で変化させ, 標準系列を用い吸光度を測定した.$

2.5.2.M₁長, M₃長, R₁体積及びTの検討

内因性キサンチン及び尿酸の消去を目的に、2.5.1.で用いた C_1 、 C_2 、 FC_1 、 F C_2 、 R_2 条件及び2.5.1.で得られた M_4 の最適条件を使用し、 M_1 、 M_3 、 R_1 及 びTを Table 2 に示すように変化させ、キサンチンあるいは尿酸含有試料及びブラン ク試料を用い吸光度を測定した、ここで M_3 は M_1 に関連し、両流路注入化合物がXで良 好に混合するように順次変化させ設定した、これにはSあるいは R_2 にメチルオレンジ 塩酸溶液を別個に注入測定し、得られる2つの波形のピークトップが同調する時間をチ ャート紙から求める別の試験を行った。

2.5.3.FC₂の検討

下記諸条件のもと、FC₁= 0.5 cm³min⁻¹ に固定し、FC₂を 0.3, 0.5 及び 0.7 cm³min⁻¹ と変化させ、標準系列を用い吸光度を測定した.FC₂の可変により、Sと R₂がXで良好に混合するように、上記同様メチルオレンジを用いた試験を行った.設定条件はM₁= 32 m (0.5 mm i.d.)、T= 45℃, R₁= 350 mm³ とし、他は2.5.2.と同様である.

2.5.4.C₁, C₂組成の検討

以上求められた条件下で、C₁、C₂中の界面活性剤の種類及び濃度を変化させ、標準 系列を用い吸光度を測定した(Table 3 参照).また,緩衝溶液の種類及びpHについ ても同様に検討した(Table 4 参照).

2.5.5.添加回収試験

添加回収試験を添加回収試験試案18)に準じて行った.グアナーゼ標準液を被検試料

の 1/10添加し,回収率を算出した.

2.6.B法における最適条件の検討

A法で求めた最適条件下, M₁長, T₁ (Delay time), T₂ (Stopped flow period) 及びR₂体積を検討した.

2.6.1. M₁長及びT₁の検討

R₁の代わりにメチルオレンジ水溶液を注入し、M₁及びT₁を変化させ、ピーク形状 を観察した.S, R₁混合溶液のM₁中への流入以前、即ち最適時間より短い状態、また はS, R₁混合溶液の一部あるいは全部のM₁からの流出以後、即ち最適時間より長い状態を作るバルブ操作を避けるように考慮した。

2.6.2.T₂の検討

内因性キサンチン類及び尿酸の消去反応に直接関連するT₂を, 2.5.2.におけるM₁検討法と同様にして行った.

2.6.3.R2体積の検討

R₂体積を 200 ~ 350 mm³ の間で変化させて、グアナーゼ標準液(1.23 または 3.68 Ul⁻¹)を各々10回測定し、相対標準偏差を比較した.

2.6.4. 添加回収試験及び応用検体の測定

添加回収試験を各種試料で行った.また,管理血清及びプール血清(9種類)を応用 検体として定量し,ダイヤカラーGUAを用いた用手法と比較した.

3.結果と考察

3.1. A法による最適条件の検討

M₄長の吸光度に及ぼす影響を Fig. 4 に示す. 直線の傾きと直線性より 36 m を選 択した.

M₁及びM₃長, R₁体積及びTが内因性物質の消去に及ぼす影響を Table 2 に示す. 一般に酵素反応は 37℃付近が最適条件とされる.しかし本法では試料注入後短時間で 最適温度に到達させるため, T>37℃で検討を行った結果, 45℃が最も反応が効率よく 進行した.また, M₁中での反応, 即ち内因性物質の消去反応が確実に行われなければ, 測定値に正の誤差を生じる. M₁長はSとR₁の混合及び反応時間に影響し, 32 m (内 径 0.5 mm)で内因性物質をほぼ消去し得た.

FC₂の吸光度に及ぼす影響を Fig. 5 に示す. 直線の傾きより 0.3 cm³min⁻¹を選択 した.

Fig. 4 Effect of reaction coil (M₄) length on absorbance in A method

求めた条件下で検量線を作成したところ、0 ~ 0.1 Ul⁻¹ 間の吸光度にほとんど差が みられなかった.しかし試薬ブランク値に対し、0.13 Ul⁻¹ で + 4% と明らかな吸光度 差を示したので、この濃度を定量限界とした. グアナーゼ活性 0.13 ~ 1.05 Ul⁻¹ の 範囲で、良好な検量線(勾配 a = 0.0268、相関係数 r = 0.9983)が得られた.

試料または試薬中の蛋白質などの流路(テフロンチューブ)への付着は、定量の再現 性に影響を及ぼす、この汚染防止に界面活性剤の添加は必要不可欠であるが、試薬ブラ ンクや酵素反応阻害の問題もあり、最適条件の検討が必須である. C₁及びC₂に添加し た界面活性剤の種類及び濃度が、検量線に及ぼす影響を Table 3 に示す、検量線の傾 き、直線性及びy切片(試薬ブランク値)を考慮し、1.2 % Triton X-100 を選択した. また、緩衝溶液の種類及びp Hが、検量線に及ぼす影響を Table 4 に示す、検量線の 傾き及び直線性より、C₁はリン酸一カリウム緩衝溶液(pH 7.4)を、C₂には同緩衝溶

	h	11	1	43	Rl		Resident ^{a)} time		Ratio of	absorbance
No.	length/m	i.d./mm	length/m	i.d./m	vol./mm ³	i.d./mm	in M _l /min	°C	(G+X)/G [*]	(G+U)/G**
1 2 3	6.00 2.00 0.41	0.5 1.0 2.2	6.00 2.00 0.41	0.5 1.0 2.2	100 100 100	1.0 1.0 1.0	2.36 3.14 3.14	37 37 37	11.4 9.10 5.10	-
4 5 6 7	0.83 0.83 0.83 0.83	2.2 2.2 2.2 2.2	16.00 16.00 16.00 16.00	0.5 0.5 0.5 0.5	150 150 150 150	1.0 1.0 1.0 1.0	6.28 6.28 6.28 6.28	37 40 45 50	6.35 5.80 4.00 4.24	2.35 2.14 1.68 1.91
8 9	1.24 1.24	2.2	24.00 24.00	0.5	150 500	1.0 1.0	9.42 9.42	45 45	2.79 1.31	1.48 1.21
10 11	1.24 +8.00 1.24 +8.00	2.2 0.5 2.2 0.5	32.00 32.00	0.5 0.5	500 500	1.0 2.2	12.56 12.56	45 45	1.20 1.15	-
12 13 14	8.00 32.00 40.00	1.0 0.5 0.5	32.00 32.00 40.00	0.5 0.5 0.5	500 500 500	2.2 2.2 2.2	12.56 12.56 15.70	45 45 45	1.08 1.06 1.03	0.99 1.01
15 16	40.00 32.00	0.5	40.00 32.00	0.5 0.5	350 350	2.2 2.2	15.70 12.56	45 45	1.04	1.01 1.00

Table 2 Eliminated of endogenous xanthine and uric acid in A method

* (Absorbance of guanase with xanthine)/(Absorbance of guanase)

** (Absorbance of guanase with uric acid)/(Absorbance of guanase)

a) The time which S and R_1 mixture passes through M_1

液 (pH 6.0)を選択した. 色原体 MBTH-ESPAS は酸性側 (pH 5.5 ~ 7.0) で安定であ る¹² ことからもC₂の pH は適当と考えた. 最近, 生化学領域でグッド緩衝液¹⁹ が広 く使用されており, グアナーゼ活性の測定にも用いられている.²⁰ しかしながらグッ ド緩衝液は比較的高価であり,本法での多量使用を考慮し, 試薬調製も簡単な緩衝溶液 を使用した.

ここまで求められた条件で標準液及び管理血清のグアナーゼ添加回収試験を行ったと ころ,標準液では良好な値が得られたが,管理血清の回収率は大きくばらついた.これ は各血清中の共存物質の種類及び粘度の違いから,測定値に与える影響が異なるためと 考えられた.そこで生理食塩水の代わりに種々の希釈液を用いた標準液で検量線を作成 し,それにより回収率を求め,それが 100 % に近くなるような希釈液を検討した.結 果を Table 5 に示す.管理血清 EXA normal を用いた時最も良い回収率を示した.ま た,EXA normalそのものの吸光度は試薬ブランク吸光度(グアナーセ活性 0 Ul⁻¹)に 近く,検量線の傾きも日差変動が少なかったので希釈液を EXA normal とした.A法に おける最適条件を Fig. 2 に示す. 0.14 ~ 4.9 Ul⁻¹ の範囲で良好な検量線が得られ た (a = 0.0199, r = 0.9994).

Fig. 5 Effect of flow rate (FC₂) on absorbance in A method

3.2.B法による最適条件の検討

A法においては検出下限が 0.13 Ul⁻¹であったため、管理血清あるいはヒト血清試料 の一部が定量限界以下となってしまった.これはM₁中で Step 1 の反応を完結させる ためにコイル長が長くなり、その間にS、R₁およびR₂の拡散が進行し、感度が下がっ たものである.そこで低活性領域にも適用できるシステムを考案した.M₁をできる限 り短くし、R₁とSがM₁に充填された時点で流れを止めるストップトフロー法を採用し た.フローダイヤグラム、最適条件及びバルブの配管を Fig.3 に示す.また、希釈液 にA法では管理血清 EXA normal を用いたが、EXA normal の添付資料によるとグアナ ーゼ活性値が 0.8 ± 0.5 Ul⁻¹ であるので、希釈液を生理食塩水とした.

Surfactant	Concentration	Correla activit	Correlation between guanase activity* and absorbance			
	%(v/v)	Slope	y-Intercept	r		
Triton X-100	0.6	0.0254	0.0416	0.9991		
	1.2	0.0276	0.0401	0.9993		
	1.8	0.0189	0.0398	0.9976		
Brij 35	0.15	0.0268	0.0930	0.9981		
	0.3	0.0281	0.0955	0.9997		
	0.6	0.0234	0.1298	0.9972		
Tween 80	0.12	0.0281	0.0807	0.9988		
	0.3	0.0284	0.1163	0.9992		
	0.6	0.0276	0.2091	0.9989		
	1.2	0.0139	0.3446	0.9924		
Tween 20	0.12	0.0255	0.1169	0.9997		
	0.3	0.0162	0.2259	0.9993		
	0.6	0.0200	0.3416	0.9955		
	1.2	0.0051	0.5050	0.9931		

Table 3 Effect of type and concentration of surfactant in carrier on correlation between guanase activity and absorbance (A method)

* Guanase activity: $0.14 - 2.1 \text{ Ul}^{-1}$

 C_1 and C_2 : 0.1 $\hat{M}(KH_2PO_4 - NaOH)$, pH = 7.4

Table 4 Effect on type and pH of buffer in carrier on correlation between guanase activity and absorbance (A method)

	Buff	er	Correla	Correlation between guanase			
c ₁		C ₂		activit	activity* and absorbance		
Туре	рH	Туре	рН	Slope	y-Intercept	r	
K-phosphate Na-phosphate Citric acid Tris	7.4 7.4 7.4 7.4 7.4	K-phosphate Na-phosphate Citric acid Tris	7.4 7.4 7.4 7.4	0.0276 0.0281 0.0210 0.0294	0.0811 0.0872 0.0896 0.0828	0.9996 0.9997 0.9966 0.9991	
K-phosphate K-phosphate	7.4 7.4	K-phosphate Citric acid	6.0 6.0	0.0337 0.0278	0.0897 0.1045	0.9999 0.9988	

* Guanase activity: 0.14 - 0.21 $U1^{-1}$ K-phosphate: KH_2PO_4 - NaOH, Na-phosphate: Na_2HPO_4 - NaH_2PO_4 Surfactant: 0.3% Birj 35 Concentration of buffer: 0.1 M

T₁及びM₁長の検討結果を Table 6 に示す. SとR₁の混合液が反応コイルM₁中に入り切らないうちに、また、M₁コイルより先に出てしまってからバルブを切りかえる と、M₁滞留中にS,R₁混合物の一部が先にDに到達してしまうので、ピーク形状はダ ブルビークを示す. M₁= 20 m の時、T₁>230 秒でシングルピークとなった. T₁= 230 秒に固定し、M₁を短くして行ったところ、M₁= 14 m の時、SとR₁を完全に M₁中に充填することができた. 内因性キサンチンと尿酸の消去にT₂の及ぼす影響は、5、7、10 及び 12 分で検討したところ、共に + 2 ~ 3 % の誤差を示しほぼ一定で変化はなかったので、最短時間の5 分を選択した. T₂ < 5 分は検討しておらず、今後の検討課題である.

R₂を検討した結果, 2種試料共に RSD = 0.62 及び 0.81.% (n = 10, 1.23 Ul⁻¹, 3.68 Ul⁻¹)と変動が最少であった 250 mm³ を選択した.

Diluent	Sample	<u>Guanas</u> Added	se activ Found	vity/U1 ⁻¹ Recovered	Recovery/%
0.85% NaCl	Guanase Std.	0 0.51	0.38	0.53	- 104
		0 0.51	0.90 1.43	0.53	104
		0 0.51	1.20 1.68	0.48	- 94
	Precipath E	0 0.51	0.76 1.31	0.55	108
	Seronorm	0 0.51	0.19 0.53	0.34	67
0.85% NaCl + 5% Albmin	Guanase Std.	0 0.51	0.90 1.46	_ 0.56	-
	Precipath E	0.51	1.03 1.42	0.39	76
KH ₂ PO ₄ - NaOH Buffer (pH 7.4)	Guanase Std.	0 0.51	0.93	0.59	115
	Precipath E	0 0.51	0.93 1.49	0.56	-110
Control Serum I	Guanase Std.	0 0.51	0.98 1.37	0.39	77
	Precipath E	0 0.51	1.45 2.13	0.68	134
CONSERA (N)	Guanase Std.	0 0.51	0.96 1.40	0.44	86
	Precipath E	0.51	1.46* 2.23	0.77	_ 151
EXA normal	Guanase Std.	0 0.51	0.35 0.85	_ 0.50	- 98
		0 0.51	0.88 1.40	0.52	102
		0 0.51	1.24 1.72	0.48	94
	Precipath E	0 0.51	1.26 1.77	0.51	100
	Seronorm	0 0.51	0.37 0.88	0.51	100

Table 5 Influence of diluent for recovery test in A method (n = 3)

Table 6 Determination of delay time (T1) and M1 coil length in B method

M					T ₁ /	sec				
	150	180	190	200	210	220	230	240	250	300
10	đ	d	d	d	d	d	-	-	d	
20	-	-	-	d	đ	đ	s	s	s	s
- T ₁			M ₁ /	m						
sec	13	14	15	16	18	20				
230	d	s	s	s	S	S				
d: do	uble p	eak,	s: si	ngle	peak,	^T 2:	5 min			

_		R.L. D. L; C. LI CHART NO SP-S
7 4 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		onfree
less less lists		
Guanase Activity		
		- ADS 0.025
Landsalarde / 0 1 ⁻¹		
└── ┠ ──┤ŵ~┝──┤ ──┤──┤──┝── ┝──┼──┠╸		
	· · · · · · · · · · · ·	
		······································
· · · · · · · · · · · · · · · · · · ·		
1.53	· · · · · · · · · · · · · · · · · · ·	
[-= -== · · · ·+ ·= ·= -· ·= · ·		
		0 61
·-]}[·][·][]] ·]]] · [-]] · ·]]]	· • • • • • • • • • • • • • • • • • • •	
		┉╢╺┈╔╦╤╤║┈╍┝╴╴╋╧╞╩┝╍╌┠╍╘┕╧╍╸┝╴
		╍┙┥╍╺┝╍╢┝──│╎╢╌┾━╍╎┟╍╼┝╍╍╽╍═┝━═┼──┼╍┰╸╎╸
		╶╍┧╕╼╾┝╾║╞╾╍┼╶╠┽╍╾╟╢╾┽╼╾┿╼╾┠╼╍┝═╖┾┚╂╌┽╸
┝╼╌┝┍╼╼┼┍╄┼┟╼╼╼┫┧╼╼┶╼┼┢╼╼┶╴┼╢╼		
<u> · ː ː ː ː ː ː ː ː ː ː ː ː ː ː ː ː ː ː </u>	<u>}-{</u> {-	╾┠┽╼╌┠╍╊╍╆┝┷╍╌┃╏╼┾╼╍╴╟╍╍┿╍┩║╺╼╾╄╽╞╎┊
		······································
┝╌╄╌╢╺╍╍┼┟╼╢╼╍╍╎╠╧┟╬╬╍╍╢╶╢═╎╧╎╎╠╶═╌┊╎╎╢╶╝		═╞╢┝═┝╪╏═┥╟╎┼╾┽┝╪╦╢┝═┾╅╢┈┽┟┟╵
	╾╟╾╢╾╍╫╢╌┼	
	d total	
	Sca	
	-	······································
	m	

Fig. 6 Peak chart for triplicate injection of standard solution in B method

以上決定した最適条件下で検量線を作成した、グアナーゼ低活性域(0~1.23 Ul⁻¹)に高い直線性(a = 0.0475, r = 0.9996)を示す検量線が得られ、高活性域 (1.84~4.9 Ul⁻¹)でそれとは異なる直線(a = 0.0307, r = 0.9995)が得られた. これにより少なくとも 0.06 Ul⁻¹の定量が可能となった、血清中グアナーゼ活性の正 常上限値は 1.02 Ul^{-1 5}であるので、検量線の範囲及び使用標準液濃度を更に検討し た結果、0~1.84 Ul⁻¹の範囲で高感度で高い直線性を示す検量線(a = 0.0499, r = 0.9999)が最終的に得られた、その時のピークチャートを Fig. 6 に示す.なお、 前述のように 1.23 Ul⁻¹ グアナーゼ標準試料を用いた場合,RSD = 0.62 % (n = 10) と高い再現性が得られた.

標準液及び管理血清における添加回収率を Table 7 に示す、管理血清の回収率が比較的低いのは、A法と同様、希釈液組成に由来するものであるが、低活性域の定量を考慮し、生理食塩水を希釈液に用いた、

	Guanas	Guanase activity /Ul					
Sample	Added	Found	Recovered	Recovery/%			
Guanase Std.	0 0.19	0.94	0.18	- 96			
	0 0.45	0.89 1.33	0.45	100			
	0 0.19	0.94 1.13	0.19	100			
	0 0.45	0.93 1.38	0.45	100			
	0 0.45	0.87 1.30	0.43	96			
· · · · ·	0 0.45	0.67 1.14	0.47	106			
, .	0 0.45	0.64 1.07	0.43	98			
	0 0.45	0.44 0.92	-0.48	107			
Precinorm E	0 0.45	0.89 1.34	_ 0.45	100			
NESCOL-XA	0 0.45	0.57 0.95	0.38	- 85			
Seronorm	0 0.45 0	0.59 0.98 0.51	0.39	86			
	0.45	0.91	0.40	89			

Table 7 Recovery test of guanase activity in B method (n = 3)

Guanase activi	ty / U1 ⁻¹
Manual method	FIA method
0.60	0.39
0.64	0.43
0.34	0.17
0.60	0.62
0.83 0,18 0.18 0.14 0.26 0.04	0.63 0.49 0.93 0.31 0.28 0.17
	Guanase activi Manual method 0.60 0.57 0.64 0.39 0.34 0.60 0.18 0.83 0.18 0.18 0.18 0.18 0.14 0.26 0.04

Table 8 Determination of guanase activity in control sera by manual method and FIA method (B method)

管理血清及びプール血清(9種類)を試料として, FIA法(B法)と用手法で測定 した結果をTable 8 に示す. FIA法については再現性良く値が得られたが, 用手法に ついては変動が大きく, 相関関係を求めるに至らなかった. 例えば, 管理血清 EXA normal についてFIA法と用手法での各々 10 回測定による2SDの値は, FIA法 0.028 Ul⁻¹(M= 0.21 Ul⁻¹), 用手法 0.20 Ul⁻¹(M = 0.25 Ul⁻¹)でFIA法の方が 1ケタ小さい.

本法における一検体当りの測定所要時間は約 20 分である.しかし 8 分 30 秒毎に 試料を注入できるため、40 検体を約 6 時間で処理でき迅速であるのに対して、用手法 では約10 時間かかる.

グアナーゼ活性測定のFIA法への応用は林ら²¹⁾によって既に報告されているが, 彼らの方法ではグアニンを基質に用いて, グアナーゼを介しキサンチンを生成させる前 処理を用手法により予め行い, その後キサンチンの定量をFIA法で行っている.した がって試料中に内因性のキサンチン類が共在するため, ブランク試験を行う必要がある. 一方,本法は試料の前処理なしに直接注入するだけでグアナーゼ活性を測定することが できる.また内因性キサンチン類, 尿酸はFIAシステム中で除去できるのでブランク 試験の必要がないので簡便である.

4.結 語

グアニンを基質として、キサンチンオキシダーゼ、ウリカーゼ、ペルオキシダーゼ共 役系により、生成する過酸化水素をインダミン色素により比色定量するグアナーゼ活性 測定法を、シリーズインジェクション、ストップトフロー、マージングゾーン法を組み 合わ-せることによりFIA法に応用した. グアナーゼ活性測定範囲は 0 ~ 1.84 Ul⁻¹ であ り, 平均回収率は 97 %, 同時再現性は 1 % 以下で正確, 精密であった. 一検体当 りの 測定所要時間は約 20分であるが, 8.5 分毎に試料注入できるため, 40 検体を約 6 時間で処理でき, 用手法と比較して迅速である. 更にブランク試験の必要もなく, 試 料を直接注入でき, 簡便である.

謝辞.

本論文提出にあたり英文要旨を御校閲いただいた上智大学理工学部化学科 F.S. Howel1博士に感謝致します。

文 献

-1)G.-Schmidt, Hoppe-Seyler's Z. Physiol. Chem., <u>208</u>, 185 (1932).

2)G. Passanenti, Med. World News. 4, 84 (1963).

<u>3)</u>伊東進,他,肝臓,<u>16</u>,10 (1975).

4) 西川洋子,他,臨床病理,30,1241 (1982).

5) 松本啓子,他,臨床病理,24,1059 (1986).

6)藤井節郎,他,臨床化学,<u>12</u>,208 (1983).

7) S. Ito, et al., Clin. Chim. Acta, 115, 135 (1981).

8) 西川洋子, 他, 臨床病理, 33, 1413 (1985).

9) U. A. S. AL-KKhalidi, et al., Clin. Chim. Acta, 29, 381 (1970).

10) M. Sugiura, et al., Chem. Pharm. Bull., 29, 426 (1981).

11) T. Ando, et al., Anal. Biochem., 130, 295 (1983).

12) 杉山正康,他,臨床化学,12,304 (1983).

13) 手登根稔,他,検査と技術,13,901 (1985).

14) 友田正子, 他, J. Flow Injection Anal., 6, 30, (1989).

15)桐栄純一, 他, J. Flow Injection Anal., 2(2), 151 (1985).

16)B. C. Erickson, et al., Anal. Chem., 59, 1246 (1987).

17)内田和秀, 他, J. Flow Injection Anal., 2(2), 143 (1985).

18)日本臨床化学会分析部会精度管理部会委員会,臨床化学,14(補),29 (1985).

1.9 今村寿明,他,化学の領域,<u>30</u>,167 (1976).

20) 穴野宏治,他,衛生検査,35,1410 (1987).

21) Y. Hayashi, et al., Anal., Chim., Acta, <u>197</u>, 51 (1987).

(1990年10月29日受理)