FIA Bibliography (IV)

Yoshinobu Baba and Norimasa Yoza*
Kyushu University

FIA-related papers appeared since 1984 have been compiled in this FIA Bibliography section. Three hundred and forty one papers were listed in the previous sections (references 226-228, 342). All papers in this section are numbered in series and shown with the titles in English. The readers are requested to send us* the reprints of their FIA-related papers that have not yet been listed in this section.

*Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 812, JAPAN

342. FIA Bibliography(IV)

343. Recent advances in new and potentially novel detectors in highperformance liquid chromatography and flow injection analysis
I.S. Krull, ACS Symp. Ser., 297, 137(1986)

344. Flow injection analysis of three N-substituted phenothiazine drugs with amperometric detection at a carbon fibre array electrode

345. Simultaneous spectrophotometric determination of copper, nickel and palladium by flow injection analysis

346. Catalytic determination of manganese at ultra-trace levels by flow injection analysis
S. Maspoch, M. Blanco and V. Cerda, Analyst (London), 111,
69(1986)

347. Reduction in size by electrochemical pre-treatment at high negative potentials of the background currents obtained at negative potentials at glassy carbon electrodes and its application in the reductive flow injection amperometric determination of nitrofurantoin

348. Determination of vitamin C by flow injection analysis

349. Determination of vitamin C in urine by flow injection analysis

350. Flow injection-hydride generation system for the determination of arsenic by molecular emission cavity analysis

351. Oxidative amperometric flow injection determination of oxalate at an electrochemically pre-treated glassy carbon electrode

352. Indirect potentiometric monitoring of proteins with a copper electrode

353. Anodic stripping voltammetry with flow injection analysis

354. Determination of nickel and cobalt in natural waters and biological material by reductive chronopotentiometric stripping analysis in a flow system without sample deoxygenation

355. Flow-injection extraction and gas-chromatographic determination of terodiline in blood serum

356. Simultaneous determination of L(+) and D(-)-lactic acid by use
of immobilized enzymes in a flow-injection system

357. The application of strongly reducing agents in flow injection analysis
Part 5. Chromium(II) and vanadium(II) in acidic medium

358. Flow-injection spectrophotometric determination of enalapril in pharmaceuticals with bromothymol blue

359. Synthesis of bidentate pyridylazo and thiazolylazo reagents and the spectrophotometric determination of copper in a flow-injection system

360. Voltammetric determination of doxorubicin in urine by adsorptive preconcentration and flow injection analysis

361. Response characteristics of a potentiometric detector with a copper metal electrode for flow-injection and chromatographic determinations of metal ions

362. Photo-cured polymers in ion-selective electrode membranes
Part 2: A calcium electrode for flow injection analysis

363. Determination of phenyl isocyanate in a flow-injection system with infrared spectrometric detection

364. Spectrofluorimetric determination of silicon by flow injection analysis

365. Flow injection analysis for traces of zinc with immobilized
carbonic anhydrase

366. Determination of phosphate species in nutrient solutions and phosphorus in plant material as phosphovanadomolybdic acid by flow injection analysis

367. Comparison of four chromogenic reagents for the flow-injection determination of aluminium in water

368. Multicomponent determinations in flow-injection systems with square-wave voltammetric detection using the Kalman filter

369. The first decade of flow injection analysis: from serial assay to diagnostic tool

370. Time-based flow injection analysis

371. Controlled-dispersion flow analysis. Flow-injection analysis applied to clinical chemistry

372. Studies of interacting biochemical systems by flow injection analysis

373. Flow injection analysis in on-line process control

374. Commutation in flow injection analysis

375. Laminar-flow bolus shapes in flow injection analysis

376. Peak width and reagent dispersion in flow injection analysis
377. Hydrodynamically limited precision of gradient techniques in flow injection analysis

378. Kinetic treatment of unsegmented flow systems.
Part 3. Flow-injection system with gradient chamber evaluated with a linearly responding detector

379. Sample dispersion with chemical reaction in a flow-injection system

380. Experimental comparison of flow-injection analysis and air-segmented continuous flow analysis

381. Determination of sucrose in the presence of glucose in a flow-injection system with immobilized multi-enzyme reactors

382. Measurements of kinetic parameters of inorganic pyrophosphatase by flow-injection procedures

383. The kinetic determination of clinically significant enzymes in an automated flow-injection system with fluorescence detection

384. The use of holding coils to facilitate long incubation times in unsegmented flow analysis
Determination of serum prostatic acid phosphatase

385. Applications of ion-exchange minicolumns in a flow-injection system for the spectrophotometric determination of anions

386. A submersible flow analysis system

387. Selectivity enhancement by flow injection analysis

388. The rapid determination of chemical oxygen demand in waste waters and effluents by flow injection analysis

389. Simultaneous multiwavelength detection in flow injection analysis

390. Batch and flow-injection determination of ethylenediamine in pharmaceutical preparations

391. The application of strongly oxidizing agents in flow injection analysis.
Part 2. Manganese(III)

392. Bioluminescent assays with immobilized firefly luciferase based on flow injection analysis

393. An unsegmented extraction system for flow injection analysis

394. Combination of flow-injection techniques with atomic spectrometry in agricultural and environmental analysis

395. Sequential atomic absorption spectrometric determination of nitrate and nitrite in meats by liquid-liquid extraction in a flow-injection system

396. Flow injection and microwave-oven sample decomposition for
determination of copper, zinc and iron in whole blood by atomic absorption spectrometry

397. Potentiometric detection in flow analysis

398. A glucose sensor based on glucose dehydrogenase adsorbed on a modified carbon electrode

399. Constant-potential pulse polarographic detection in flow-injection analysis without deaeration of solvent or sample

400. Flow-injection potentiometric stripping analysis—a new concept for fast trace determinations

401. Flow-injection determination of sulphite and assay of sulphite oxidase

402. A coated tubular solid-state chloride-selective electrode in flow-injection analysis

403. On-line application of ion chromatography in a thermal power plant

404. Flow cell and diffusion coefficient effects in flow injection analysis

405. A computer-controlled voltammetric flow-injection system

406. Amperometric acetylcholine and choline sensors with immobilized enzymes
407. Determination of sulphur dioxide by flow injection analysis
 with amperometric detection

408. The determination of bromide in natural waters by flow
 injection analysis

409. Spectrophotometric determination of nonionic surfactants by
 flow injection analysis utilizing ion-pair extraction and an
 improved phase separator

410. Simultaneous determination by iterative spectrophotometric
 detection in a closed flow system

411. Simultaneous spectrofluorimetric determination of cerium(III)
 and cerium(IV) by flow injection analysis

412. Spectrophotometric determination of iodate, iodide and acids by
 flow injection analysis

413. A microcomputer-based peak-width method of extended calibration
 for flow-injection atomic absorption spectrometry

414. Preconcentration and determination of trace chromium(III) by
 flow injection /inductively-coupled plasma/atomic emission
 spectrometry

415. Determination of lead in gasoline by a flow-injection technique
 with atomic absorption spectrometric detection

416. Determination of some organophosphorus insecticides by flow
 injection with a molecular emission cavity detector
417. Sequential flow-injection determinations of calcium and magnesium in waters

418. Preconcentration of copper(II) on immobilized 8-quinolinol in a flow-injection system with an ion-selective electrode detector

419. Double-beam thermal lens spectrometry

420. Spectrophotometric determination of water by flow injection analysis using conventional and pyridine-free two-component Karl Fischer reagents

421. Monosegmented system for continuous flow analysis.
Spectrophotometric determination of chromium(VI), ammonia and phosphorus

422. Selective determination of chlorine dioxide using gas diffusion flow injection analysis

423. Determination of cyanide by atomic absorption using a flow injection conversion method

424. Chemiluminescence flow injection analysis determination of sucrose using enzymatic conversion and a microporous membrane flow cell

425. Flow injection analysis of binary and ternary mixtures of arsenite, arsenate and phosphate

426. Determination of trace-level chromium(VI) in the presence of chromium(III) and iron(III) by flow injection amperometry
427. Automated flow-injection phenol red method for determination of bromide and bromide salts in drugs

428. Quantitative study of chemical equilibria by flow injection analysis with diode array detection

429. Dual phase gas diffusion flow injection analysis/hydride generation atomic absorption spectrometry

430. Versatile instrument for pulse width measurement

431. Continuous-flow injector for flow injection analysis

432. Determination of sulfate, orthophosphate and triphosphate ions by flow injection analysis with the lead ion selective electrode as detector

433. Potentiometric gas sensor for the determination of free chlorine in static or flow injection analysis systems

434. New configuration for construction of pH gradients in flow injection analysis

435. Novel flow-through pneumatoamperometric detector for determination of nanogram and subnanogram amounts of nitrite by flow-injection analysis

436. Flow-injection analysis of volatile, electroinactive organic compounds at a platinum gas diffusion membrane electrode by use of a redox mediator

437. Flow-injection analysis of phenols via bromination and detection of unreacted bromine at a platinized gas diffusion membrane electrode

438. Dispersion in flow injection analysis measured with microvoltammetric electrodes

439. Continuous analysis with ino-selective electrodes:
flow-injection analysis and monitoring of enzyme based reactions

440. An electrochemical determination of uric acid in sera by a flow-through equipment with and without uricase

441. Potentiometric flow-injection determination of sugars using a metallic copper electrode

442. Aqueous flow injection analysis with fourier transform infrared detection

443. Flow-through sandwich PVC matrix membrane electrode for flow injection analysis

444. Selective biochemical reagents in flow injection analysis

445. Flow injection analysis of concentrated aqueous solution of strong acids and bases

446. Indirect atomic absorption determination of cerium and lanthanum by flow injection analysis using an air-acetylene flame
P. Martinez-Jimenez, M. Gallego and M. Valcarcel, At. Spectrosc., 6, 137(1985)
447. The flow injection approach for making analytical chemiluminescence measurements

448. Flow injection analysis of cobalt(II) by catalytic oxidations of Stilbazo and Pyrocatechol Violet

449. Use of peak height for quantification in solvent extraction/flow injection analysis

450. Eosin Y-sensitized chemiluminescence of 7,7,8,8-tetracyanoquinodimethane in surfactant vesicles for determination of manganese(II) at sub-nanogram levels by flow injection method

451. Automatic enzymatic-fluorimetric determination of ethanol in blood by flow injection analysis

452. The application of chemically modified electrodes in flow injection analysis

453. Separation-free enzyme fluorescence immunoassay by continuous flow injection analysis
T.A. Kelly, Enzyme-Mediated Immunoassay, 1985, 191

454. On-line monitoring of enzymes in downstream processing by flow injection analysis (FIA)

455. Matrix exchange technique for the simultaneous determination of several elements in flow injection potentiometric stripping analysis

456. Flow injection analysis of chloride in tap and sewage water using ion-selective electrode detection

457. Determination of nitrate and nitrite by continuous liquid-liquid extraction with a flow-injection atomic-absorption detection system

458. Flow injection analysis by using acid-base or metal-ligand buffers and color-indicators

459. Evaluation of nitrogen autoanalyzer for wastewater

460. Effect of column temperature on high-performance liquid chromatographic behaviour of inorganic polyphosphates
II. Gradient ion-exchange chromatography

461. Computer-assisted prediction of retention times for inorganic polyphosphates in gradient ion-exchange chromatography

462. Calculation of convective diffusion current at a strip electrode in a rectangular flow channel: inviscid flow

463. Automated flow-injection pseudotitration of boric acid

464. Flow injection analysis: from serial assay to a new concept of measurement in the chemical laboratory

465. Thermal lens spectrometry based on single-laser/dual-beam configuration with lock-in detection
466. The determination of uranium(VI) by flow-injection analysis
467. The determination, by flow-injection analysis, of fluoride,
 chloride, phosphate, ammonia, nitrite, and nitrate
 E.A. Jones, Rep-MINTEK, M200, 65(1985)
468. Flow injection analysis in clinical chemistry
 Chem., 8, 229(1985)
469. Reflections on the modified simplex - I
470. Reflections on the modified simplex - II
471. Speciation studies by flow-injection analysis
 M.D. Luque de Castro, Talanta, 33, 45(1986)
472. A forth package for computer-controlled flow-injection analysis
473. Some test parameters of four methods for the determination of
 protein with respect to their application in flow injection
 analysis (in German)
 K. Peisker and H. Matschiner, Z. Med. Laboratoriumsdiagn., 26,
 422(1985)
474. Flow injection atomic absorption spectrometry: the kinetics of
 instrument response
 J.M.H. Appleton and J.F. Tyson, J. Anal. At. Spectrom., 1,
 63(1986)
475. Flow injection analysis with inductively coupled plasma-atomic
 emission spectroscopy: critical comparison of conventional
 pneumatic, ultrasonic and direct injection nebulization
 K.E. LaFreniere, G.W. Gray and V.A. Fassel, Spectrochim. Acta,
 Part B, 40, 1495(1985)
476. Flow injection analysis - new method in wet analysis
 H. Matschiner, P. Sivers and H.H. Ruettinger, Wiss.
 Z.-Martin-Luther-Univ. Halle-Wittenberg, Math.-Naturwiss. Reihe,
 34, 3(1985)
477. Flow injection analysis for soil available zinc by solvent
 extraction with dithizone (in Chinese)
L. Sun, L. Lin and Z. Fang, Fenxi Huaxue, 13, 447(1985)

Y. Lu, Y. Zhu and Z. Yan, Fenxi Huaxue, 13, 545(1985)

479. Flow-injection photometric analysis determination of iron(III)
(in Russian)
V.V. Kuznetsova, Zh. Anal. Khim., 40, 1859(1985)

480. Injection devices in flow-injection analysis (in Slovak)

481. Use of an FIA ion exchanger-atomic absorption system for
determining manganese, lead and copper (in Spanish)
Quim., Ser. B, 81, 117(1985)

482. Spectrophotometric determination of mercury by flow injection
analysis (in Spanish)
T. Perez Ruiz, M. Hernandez Cordoba, C. Martinez Lozano and C.
Sanchez-Pedreno, Quim. Anal., 4, 72(1985)

483. Applications of flow injection to samples of agricultural
interest (in Spanish)
J. Martinez Calatayud, Tec. Lab., 9, 18(1985)

484. Flow injection analysis: powerful and versatile tool for
chemical analysis (in Swedish)

485. Application of FIA method to a routine analysis
- Determination of Cu(II), Fe(II) and Fe(III) - (in Japanese)
H. Shimizu, T. Onoe and M. Murakami, The Analytical Committee's
Data of Japan Mining and Smelter, 35, 79(1985)

486. Determination of high concentration of glucose by flow
injection analysis with immobilized enzyme tube reactor (in
Japanese)
S. Uchiyama, Y. Tohfu, S. Suzuki and G. Muto, Bunseki Kagaku,
35, 134(1986)

487. Spectrophotometric determination of boron by flow injection
analysis (in Japanese)
K. Toei, S. Motomizu, M. Oshima and M. Onoda, Bunseki Kagaku,
35, 344(1986)
488. Potentiometric flow injection analysis of trace bromate based on its redox-reaction with the iron(III)-iron(II) buffer solution containing bromide (in Japanese)

489. Determination of copper(II) at sub-picogram level by flow injection method using micellar enhanced chemiluminescence of 1,10-phenanthroline (in Japanese)

490. Determination of copper(II) at sub-picogram level by flow injection method using micellar enhanced chemiluminescence of 1,10-phenanthroline;
Application to rabbit lens (in Japanese)

491. New type valve for flow injection analysis;
I. Application to stopped-flow spectrophotometric determination of glucose (in Japanese)
J. Toei and N. Baba, Bunseki Kagaku, 35, 411(1986)

492. Studies on fluorometric determination of cyclophosphamide with nicotinamide and acetophenone (in Japanese)

493. Simultaneous determinations by flow-injection analysis (in Japanese)

494. Flow injection analysis using immobilized enzymes (in Japanese)

496. Comparison of sample injectors used for flow injection analysis (in Japanese)

498. ICP emission spectrometry (in Japanese)
 H. Haraguchi, Kagaku(Kyoto), 40, 476(1985)

499. The rapid examination for phosphate fertility in grazing and farm land soil derived from neutral volcanic ash.
 3. Application of flow injection analysis to 10^{-2}M H_2SO_4 extraction (in Japanese)

500. The rapid examination for phosphate fertility in grazing and farm land soil derived from neutral volcanic ash.
 4. Application of flow injection analysis to $\text{NH}_4\text{F} \cdot \text{HCl}$ extraction (in Japanese)