逆ミセルを用いたフローインジェクション化学発光分析法

藤原 照文

広島大学大学院理学研究科 〒739-8526 東広島市鏡山 1-3-1

A flow injection chemiluminescence method for trace analysis using a reversed micellar system

Terufumi FUJIWARA

Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan

A flow injection method based on the combination of on-line extraction with reversed micellar mediated chemiluminescence (CL) detection has been developed for trace analysis of aqueous samples. The flow procedure involves solvent extraction of analytes from aqueous solutions, followed by membrane phase separation, and subsequent CL detection using a reaction of extracted species with luminol in a reversed micellar solution. The reversed micellar interface may play an important role in immediate conversion of the extracted species into CL-active species, which occurs upon mixing directly with the reverse micelles in a flow cell of the CL monitor. This technique provides an effective means to improve selectivity in CL analysis and thus the problem of interference is reduced or eliminated.

1.はじめに

フローインジェクション分析法 (FIA) は,そ の装置化が容易で,しかも安価であること,そ の取扱も簡便で,少量の試料と試薬を用いて高 精度の定量が迅速に行えること,さらに自動化 の容易さなどの特長をもつことは,周知の通り であり,現在幅広く利用されている。また,そ のシステムの小型化の可能性もあるので,最近 注目されつつある "on site" でのモニターリング やオンラインでの分析には最適である。

ところで,FIA を用いて高感度定量を行うには 極めて少ない。さらに,一般に CL 反応は速いの 検出手段が非常に重要となる。最近の精巧な分 で迅速測定が可能である。従って, CL 法は上記 析装置は,その制御の自動化が進み高感度かつ のような FIA の特長を損なわないという点で,

高選択的など高性能ではあるが、高価でしかも 大型であり、設置条件や維持管理が容易ではな いので、FIAの検出部に組み入れ、フィールド等 で使用するには不向きである。一方、古くから 知られている化学発光 (CL)法は、化学分析へ の一般的な使用は可視・紫外あるいは蛍光分光 法に比較してまだなお少ないが、感度が高く、 検量範囲が広いという特長をもつことから微量 分析において価値のあることが認められてきた。 また、その装置化に要求される主な構成要素は 極めて少ない。さらに、一般に CL 反応は速いの で迅速測定が可能である。従って、CL 法は上記 のような FIA の特長を損なわないという点で、 その検出部に適した方法である。ところが、CL 法は水溶液系を通常使用するので、有力な分離 手段の一つである溶媒抽出法と組み合わせるこ とは困難¹⁾であった。そこで、この難点を克服す るために、逆ミセル中でのCL反応を活用するこ とを着想し、両法を直接結合することを可能に した。さらに、その抽出操作をオンライン化し て迅速かつ簡便で選択的な高感度 CL 分析法を 構築した。現在、逆ミセルがもつ特異機能を用 いたフローインジェクション CL (FI-CL) 分析法 の進展をめざすとともに、特にその界面のミク ロ環境を利用した反応場の設計と制御を行うた めの基礎的研究を系統的に進めている。

CL に関する詳細な解説について多くの総書²⁻⁶⁾ が出版され,逆ミセルに関しても詳説⁷⁻¹²⁾ されて いる。また FIA の基本的な原理や装置の詳細に ついては多くの優れた成書¹³⁻¹⁷⁾ や総説¹⁸⁻²⁰⁾ があ る。しかし, FIA 法において逆ミセルを用いた 研究例は現在まだ少ないのが実状で,本稿では, 逆ミセルの特異性,逆ミセル界面での物質移動 において観測された特異な挙動について概観し た後,それを利用した FI-CL 分析法について, 我々の研究例を中心に概説する。

2. 逆ミセルの特異なミクロ環境

逆ミセルは、極性の極めて低い有機溶媒中に 界面活性剤を用いてわずかの水を分散させるこ とによって形成され、Fig. 1 のように"water pool"と称されるミセル内殻の水相側に界面活性 剤の極性基を向け、その疎水基を外側のバルク 有機相に配向させた特異な構造を有する。その 界面活性剤に対する水のモル濃度比 (*R* = [H₂O]/[界面活性剤]) が低く、通常のバルク状態 の水の比率が比較的低いミセルは構造的に界面 領域が主体と見なすことができる。そこで、そ れを特に逆ミセルと称し、マイクロエマルジョ

Fig. 1 Schematic representation of a reverse micelle.

ンとは区別する研究者^{6,7)} もいる。また,その構 造的な特異性から生体膜の界面や酵素の反応活 性中心などと類似した環境をもつミクロ反応場^{8,9)} であると考えられている。逆ミセル系は複雑で, 反応制御などにおいて考慮すべきパラメータが 多いという難点があるが,そのような特異な集 合形態をとることで,生体系での反応場などに 見られるように,均一媒体では不可能な化学制 御が可能になるなど,潜在的な能力を期待する ことができる。

逆ミセルを形成する駆動力は界面活性剤分子 同志の双極子ー双極子相互作用であると考えら れているが、そこに水が共存すると、その形成 能は著しく高まる。反応場としての環境につい ては、その water pool の構造とそこに存在する水 の性質に関する研究が最も多く,蛍光寿命,NMR, 赤外・ラマン分光など、種々の測定法¹¹⁾が用い られている。その構造としては、ミセル界面付 近の水相とその内側の芯にあたる水相という二 つの領域からなる単純なモデルが、陰イオン性 界面活性剤²¹⁾と陽イオン性界面活性剤²²⁾のいず れの逆ミセルに対しても提唱され、最も広く受 け入れられている。また、その水の性質として は、界面付近の水相には、界面活性剤の極性基 に強く配向し、並進や回転など動きが強く制限 されている"bound"状態の水分子が局在してい

ると推測されている。そのため、この水相は高 い粘性をもち、誘電率が低く、水分子同士の水 素結合によるネットワークはほとんど存在しな い。これに対して"free"状態の水分子が、より 深い芯側の領域に存在し、それは通常のバルク 状態の水に類似していると考えられている。さ らに三つ目の領域として、その界面から1~2分 子層あるいは界面活性剤当たり1~2分子程度の 水相に"trapped"状態の水分子が局在するとい うモデル^{7,23)}も提案されている。このような三つ の領域の存在は,分子動力学法によるシミュレ ーションの結果²⁴⁾からも支持された。ところで, 内水相サイズすなわち water poolの半径 rwは,そ の構造及び水の状態を決定づける重要なパラメ ータであることが指摘されているが,水の比率R に対して、式⁸⁾ $r_w = d_R$ で関係づけられ、最もよ く用いられている陰イオン性界面活性剤である Aerosol-OT (AOT) では, $d_r = 0.15$ nm と見積もら れている。水の比率 R が大きくなるとともに, その water pool には "bound" 状態の水分子の割 合が減少し"free"状態の水分子が増すと予測さ れ、上記の分子動力学法シミュレーション²⁴⁾か らも示唆された。しかし一方, water pool 内は均 ーな構造で,rwが小さい場合は,その pool 内の 界面活性剤イオンの濃度が相対的に高くなり, 水-水間の水素結合が減少するが,r_wを増大す ると、通常の水溶液中に類似した水構造が形成 されるようになるという考え25)もある。

逆ミセルを化学発光や生物発光のミクロ反応 場として用いることによって,その発光強度が 増幅²⁶⁻³²⁾ あるいは持続³³⁻³⁵⁾ するといったことが 報告されている。そのような特異機能の発現に 関して water pool の環境を調べる目的で,その中 に環状配位子 (tmc:1,4,8,11-tetramethylcyclam)を 有する平面 4 配位のニッケル(II)錯体 [Ni(tmc)]²⁺ をプローブとして取り込ませ,その可視吸収ス

Fig. 2 Schematic representation showing the coordination of H_2O to $[Ni(tmc)]^{2+}$ at a reversed micellar interface.

ペクトル測定を行った。この錯体に水分子のようなドナー性の化学種(D)が配位すると,次式の 平衡によって5配位錯体のみが形成される。

 $[Ni(tmc)]^{2+} + D = [Ni(tmc)D]^{2+}$ AOT 逆ミセルにおいては,その界面活性剤の 極性基が強い親水性であるため,R 値を低下さ せると,その界面に強く引き付けられた水分子 が著しく分極し,R=1付近では水酸化物イオン の配位に類似した吸収スペクトルが得られるこ と³⁶⁾を見いだした。この強い分極は,Fig.2に示 すように,水分子がAOTのスルホ基への水素結 合と[Ni(tmc)]²⁺の中心金属への酸素配位による 協同的相互作用を受けることに帰因すると推察 でき,ミセル界面で"trapped"状態の水分子が 生じていることを示唆している。

陽イオン性界面活性剤である塩化セチルトリ メチルアンモニウム(CTAC)の逆ミセルにおい て,water pool 中の CIの濃度は R = 15で計算上 3.65 M となる。このとき観測された[Ni(tmc)]²⁺ の 吸収スペクトルは,通常の水溶液において塩化 テトラメチルアンモニウムを添加して CI濃度を

同程度まで上げることによって得られるスペク トル³⁷⁾とほぼ一致した。このことは、その water pool 内が濃厚な疎水性塩の水溶液とほぼ同様の 状況にあることを示唆している。 逆ミセルでは, そのpool内の水の比率を下げることによってCl 濃度をさらに高めることができる。このとき, その water pool 中に塩基性条件下で塩化金酸を 溶存させると,通常の水溶液中では容易に加水 分解を引き起こす条件であるにもかかわらず、 そのクロロ錯体の構造が保持³⁸⁾される。それ故, その塩基性 water pool を CL 反応場として用いた 場合には,塩化金酸は最適の CL 活性を維持する ことが可能になると推察され、実際、通常の水 溶液に比較して,より微量の金³⁸⁾やロジウム³⁹⁾ を検出することができた。

さらに、CTAC 逆ミセルでは、その極性基は 疎水性で水素結合形成能をもたないが、その界 面付近に局在する対陰イオンへ水和した水分子 が、"bound"状態の水としてミセルの安定化に 大きく寄与していると予測される。そのことは 分子動力学法シミュレーションの結果⁴⁰⁾からも 指摘されている。その界面活性剤相の環境を調 べるために、プローブとして可視部に強い吸収 帯をもつ 5,10,15,20-テトラフェニルポルフィリ ンの亜鉛錯体 Zn(tpp) を用い,上記のニッケル錯 体と同様な配位平衡によるスペクトル変化を観 測し,バルク有機相から逆ミセル界面への分配 あるいは吸着挙動⁴¹⁾について検討した。クロロ ホルムをバルク溶媒とする CTAC 逆ミセル溶液 に Zn(tpp) を溶解すると、その吸収ピーク (419 nm) が減少し、Zn(tpp)Cl の生成による新たな吸 収ピーク (433 nm) が出現する。無電荷の Zn(tpp) 錯体は water pool に取り込まれないことから、こ の Zn(tpp)Cl は逆ミセルの界面活性剤相で生じ その錯体の生成割合は減少する。これは、界面 相から water pool へ取り込まれ、CL 反応を生じ

活性剤相でも CI への水和が水の比率とともに 増大し, CI の配位が抑制されることを示唆して いる。また、これらのことは、その疎水的な界 面相に water pool から水や陰イオンが浸み出し ているという分子動力学法シミュレーションに よる予測40)に合致している。さらに、臨界ミセ ル濃度を求め、相分離モデル⁴²⁾を仮定して逆ミ セル生成の自由エネルギーΔG⁰m を算出した。そ の結果から、CIへの水和が逆ミセルの安定化に 寄与していることが示唆された。ところが、 CTAC に対して水分子のモル比が 4 倍以上にな ると、 ΔG^0_m はあまり変化しなくなる。陰イオン クラスター $Cl'(H_2O)_n$ において, n > 4 では Cl へ の水和より水分子同志の水素結合が優先的にな ることが気相中で見いだされていること43)から, その△G⁰mの結果は逆ミセル界面相中の疎水的環 境が気相中に類似していると仮定することによ って説明できるように思われる。また、逆ミセ ルのバルク有機相としてクロロホルムーシクロ ヘキサン混合系を用いた場合との比較から、そ のミセル安定化は,界面活性剤相での CI へのク ロロホルムの溶媒和4)によって低下すると推測 される。このような界面相での相互作用は、下 記のような逆ミセル界面での物質移動において も重要な役割を果たしていると考えられる。

3. 逆ミセル界面での物質移動

上記のような特異な環境をもつ逆ミセルを反 応場として用いた CL 法の分析化学的応用にお いて、発光試薬だけではなく、過酸化水素など の分析種も逆ミセル中に分散させる場合22-32)に は, 逆ミセル界面での物質移動を考慮する必要 はない。一方, その逆ミセルメディア CL 法を溶 媒抽出法と組み合わせた場合には,抽出液中の ていると考えられる。また,R値を増大させると,分析種は逆ミセル溶液との混合時にバルク有機 る。従って、ミセル界面での物質移動が必然的 に起こることになる。このとき、濃縮効果とと もに、特定の分析種が CL 反応に対する活性能を 選択的に発現することを見いだした。

ヨウ素分子の取り込み: CTAC 逆ミセル water pool ヘヨウ素分子が取り込まれる過程⁴⁵⁾で は,その界面相に局在する CI との相互作用によ る I_2 CI の生成⁴⁰⁾が重要になると考えられる。こ のとき,ヨウ素の吸収ピーク (520 nm) は瞬時に 消滅し, I_3 の生成による 360 nm のピークが観測 される。それは I_2 CI が水分子あるいは水酸化物 イオンと反応することによって起こり,同時に 生成される次亜ヨウ素酸や亜ヨウ素酸イオンが ルミノールを酸化して CL が生じると推測され る。しかし,分析種であるヨウ素を I_3 として water pool 内に予め分散させておいた場合には発 光が観測されないこと⁴⁶⁾ が分かった。このこと は,ヨウ素がバルク有機相から water pool へ移動 する時のみ,それらの酸化剤がミセル界面相で

Fig. 3 Absorption spectra of $[Fe(oxine)_3]$ in 6.5 (v/v) chloroform-cyclohexane mixture (a) and in reversed micellar solutions with R = 8.97 (b), 12.7 (c) and 23.8 (d).

過渡的に生成されることを示唆している。

金属キレートの取り込み: ルミノール CL に要する塩基性 water pool を有する CTAC 逆ミ セルに, [Fe(oxine)] (Fig. 3)⁴⁷⁾ や[VO(acac)]⁴⁸⁾を 混合すると, それらの金属キレートの可視吸収 スペクトル強度が瞬時に減衰することから、そ のミセル界面で両キレートは容易に解離するこ とが明らかになった。従って、このとき生成す る Fe³⁺ や VO²⁺ がルミノール CL 反応に対して触 媒になると推測される。一方、これらのイオン を塩基性 water pool 内に予め溶解させておくと, それらは加水分解を受け、CL 反応に対する触媒 活性を失う。このことは、それらの金属キレー トの解離反応は逆ミセル界面相で進行し、water pool 内では CL 触媒反応が加水分解反応と競争 して起こっていることを示唆している。また、 その解離の程度は R 値の増大とともに増すこと (Fig. 3)⁴⁷⁾ から、その解離平衡に対して water pool のサイズ効果49)も大きく寄与していると見なす ことができる。

バナジル以外の CL 活性な遷移金属のアセチ ルアセトン錯体について同様な CL 測定を行い 比較した結果⁵⁰⁾ を Table 1 に示す。コバルト(II) キレートの場合に弱いながらも発光が得られた

Table 1 Relative CL intensity observed from the reversed micellar-mediated luminol reaction with various metal acetylacetonate complexes

Complex	Metal concentration/ ng cm ⁻³	Relative CL intensity
VO(acac) ₂	25	100
Cr(acac),	1000	0.3
Mn(acac) ₂	1000	0.0
Fe(acac),	1000	0.2
Co(acac),	25	9.4
Ni(acac) ₂	1000	0.1
Cu(acac),	1000	0.0

[luminol] = 4.0×10^{-4} M in CTAC/6:5(v/v) CHCl₃-c-C₆H₁₂/water (buffered with Na₂CO₃); *R*=15.

Fig. 4 Variations of the CL intensity with concentrations of Na₂CO₃ (●), Na₂SO₄ (▲), Na₂HPO₄ (○) and CH₃COONa (△) in the presence of NaOH (0.4 M) in the dispersed aqueous phase for the reversed micellar-mediated luminol reaction with [VO(acac)₂].

が,それ以外の金属では CL がほとんど観測され なかった。従って,この CL 挙動はバナジルキレ ートに対して特異的で非常に選択性が高いと言 える。さらに,その塩基性 water pool 中に炭酸イ オンが存在する場合には,pH を一定に保った条 件下でも,[VO(acac)₂]によって増幅される CL 強 度が炭酸塩濃度とともに増大するという特異な 現象⁵⁰⁾が観測された(Fig.4)。このような効果 には,CTAC 界面活性剤の極性基に対する陰イ オンの親和性⁵¹⁾が大きく寄与していると推論し ている。

4. FI-CL 分析法への応用

一般的に多く用いられているルミノール CL 検出法では、その発光強度に対して類似の影響 を与える化学種が共存する場合、選択性に乏し く互いに干渉し合うという欠点が生じる。この 問題点を克服するために、分離法と組み合わせ ること¹⁾が最も有効である。そのような分離手段 の一つに濃縮も可能な溶媒抽出法があるが、通 常使用される水溶液系での CL 法の場合、その抽 出液を発光試薬の水溶液に直接混合させること ができない。また,金属キレートとして抽出す ると,そのままでは CL 反応に対する触媒作用 を示さない。このようなことから,他の光分析 法では容易に結合して FIA に用いられている抽 出操作のオンラインシステムを直接組み合わせ た FI-CL 法の報告例はなかった。我々は,その ような難点を克服するために上記のような逆ミ セルメディアの特異機能を利用した。

無電荷分子の抽出系との組み合わせ: ヨウ 化物イオンを無電荷のヨウ素分子に酸化してシ クロヘキサンヘ抽出し,その抽出液とルミノー ル含有の逆ミセル溶液をマージングゾーン法の 流路系を用いて各々注入し,フローセル内で合 流,混合させて CL 強度を測定する FIA 法⁴⁵⁾を 提案した。さらに,Fig.5 に示すように,抽出操 作のオンライン化に抽出コイルを用い,続く相 分離を膜セパレータで行い,逆 FIA 方式で注入 したルミノール逆ミセル溶液の流路系に,その 抽出液の流路を結合して定量する新規な FI-CL 分析法⁴⁸⁾を開発した。この方法では,ラインに

Fig. 5 Schematic diagram of the on-line oxidation-solvent extraction-reversed micellar-mediated CL flow system for the iodide determination. C1: Chloroform (3 ml/min); C2: cyclohexane (2 ml/min); O: oxidizing agent (3 ml/min); S: aqueous sample (8 ml/min); L: reversed micellar luminol reagent (20 µl); EC: extraction coil; PS: phase separator; D: detector; R: restrictor; W: waste; P1: plunger pump; P2, peristaltic pump.

Fig. 6 Representative CL signals recorded after online solvent extraction without oxidation and with oxidation using 2-iodosobenzoic acid for a gargle sample. The estimated amounts of iodine and total iodine, $I_2 + I$, in 100 ml of a diluted sample are 5 and 15 µg, respectively.

組み込んだ酸化剤を送液した場合,ヨウ化物イ オンの酸化が生じるのでヨウ素との総和に対応 する発光強度が得られる一方,それを水の送液 に換えるとヨウ素のみによる CL が観測される (Fig. 6)。従って,ヨウ素とヨウ化物イオンの形 態別定量が可能で,ヨウ化物イオンの検出限界 は 0.02 ng/ml に達し,検量範囲は 5~200 ng/ml となった。また,その酸化剤や重金属イオンな ど,CL に対して干渉する多くの共存イオンの影 響を溶媒抽出法と組み合わせることによって除 去することができた。

イオン会合抽出系との組み合わせ: 酸性溶 液中の塩化金酸陰イオンを,抽出試薬として用 いたトリ-n-オクチルホスフィンオキサイド (TOPO) へのプロトン付加によって生成させた 陽イオンとのイオン会合を形成させて,クロロ ホルムへ抽出し,上記と同様に逆ミセルメディ ア CL 検出法と結合させて,金を高感度に定量す る方法^{52,53)}を提出した。この方法を銀合金中の 金に定量に適用して,共存イオンからの干渉を ほとんど受けないことを確認した。さらに,Fig. 5 に類似した FIA 流路系⁵⁴⁾でオンライン化を達 成し,金の検出限界 1.0 ng/ml,検量範囲 10~5000 ng/ml を得た。また,塩化金酸イオンを逆に抽出 試薬として用いて,アトロピンやスコポラミン など,アルカロイドを酸性溶液からジクロロメ タンヘイオン会合抽出することによって高感度 に間接定量⁵⁵⁾できることを明らかにした。

キレート抽出系との組み合わせ: Fig.5と同様な FIA 流路系を用いて,試料とキレート抽出 試薬を送液,合流した後,クロロホルムで抽出 する操作をオンライン化して,ルミノールー過酸化水素系逆ミセルメディア CL 検出系と組み 合わせた FI-CL 法を,鉄の2価と3価の分別定量 ⁵⁰ に適用した。オキシンを用いると,鉄(III)イオ ンは pH 3~4 でクロロホルムへ定量的に抽出さ れる一方,鉄(II)イオンの抽出は起こらないので, Fig. 7 に示すように両者の混合溶液であっても 鉄(III)のみの CL シグナルを得ることができる。 鉄(II)については、その試料溶液に過酸化水素を

操作で定量することができる。従って, CL 強度 の差から,鉄(II)と鉄(III)の分別定量が可能とな る。しかし、同時に抽出されるオキシンは、逆 ミセル界面で[Fe(oxine)3]の解離を抑制し、その CL 触媒効率を低下させるので,抽出操作でのオ キシンの濃度を制限する必要があった。

吸着逆ミセルによる抽出系との組み合わせ: ガラス表面に逆ミセルが吸着し、その内水相へ 有機溶媒相から過酸化水素が取り込まれる、す なわち抽出されるという現象を見いだした。そ こで、この吸着逆ミセルを抽出とルミノール CL 反応の場として利用して,最も単純な一流路系 の新規な CL 法⁵⁷⁾ を開発し,有機溶媒中の過酸 化水素の定量に適用した。繰り返し測定におい ては, 試薬として注入したルミノール含有の逆 ミセル溶液が吸着逆ミセルの役割を担うので、 その補充の必要はなく,再現性のよい CL 信号が 得られた。この定量法は、有機溶媒中の過酸化 水素を通常の水溶液に抽出して電気化学的に定 量する従来の方法よりも簡便で、しかも高感度 (検出限界は 1.2×10⁻⁷ M) である。

その他,流れ系を利用する分析法として,薄 層および液体クロマトグラフ分離において、逆 ミセルの移動相がうまく使用された研究例58-61) がある。

5.おわりに

これらの研究において得られる新たな知見は、 逆ミセルを用いた FI-CL 分析法の高度化に必要 となる。さらに,最近重要視されつつあるメゾ スコピック系化学における分子集合形態の構造 と物性への金属錯体の関与及びその特異性,優 れたイオン認識・輸送の機能をもつ生体膜、逆 ミセル界面に類似した液体膜や乳化液膜 62-66)の 界面における物質移動過程や抽出機構、また金

添加して,鉄(II)を鉄(III)に酸化した後,同様の 属イオンの取り込み機能を有するフェリチン (鉄貯蔵タンパク)など、生体系での酵素の反 応活性中心およびそれに類似した反応場がもつ 環境の解明に対しても寄与するであろう。また, そこから逆ミセルを利用した新規な分析法の開 発への糸口が見いだされることを期待している。 最後に、本総説を執筆する機会を与えて下さい
 ました本誌編集委員会委員長の酒井 忠雄先生 ならびに幹事の山根 兵先生に深く感謝申し上 げます。

参考文献

- 1) T. Fujiwara and T. Kumamaru, Spectrochim. Acta Rev., 13, 399 (1990).
- 2) 今井一洋編、"生物発光と化学発光-基礎と 実験"広川書店 (1989).
- 3) A. Fernandez-Gutierrez and A. Munoz de la Pena, "Molecular Luminescence Spectroscopy. Methods and Applications: Part 1, " ed. by S.G. Schulman, Wiley & Sons, Chap. 4, pp. 468-475 (1985).
- 4) K. Nakashima and K. Imai, "Molecular Luminescence Spectroscopy. Methods and Applications: Part 3," ed. by S. G. Schulman, Wiley & Sons, Chap. 1 (1993).
- 5) T. A. Nieman, "Chemiluminescence and Photochemical Reaction Detection in Chromatography," ed. by J.W. Birks, VCH, Chap. 4 (1989).
- 6) 藤原照文, 熊丸尚宏, "機器分析ガイドブッ ク,"日本分析化学会編、丸善, pp. 70-86 (1996).
- 7) P. Luisi and B. E. Straub, Eds., "Reverse Micelles", Plenum, New York, pp. 1-19 (1984).
- 8) M. Zulauf and H.-F. Eicke, J. Phys. Chem, 83, 480 (1979).

- M. P. Pileni, Ed., "Structure and Reactivity in Reverse Micelles," Elsevier, Amsterdam, pp. 342-360 (1989).
- J. H. Fendler and E. J. Fendler, "Catalysis in Micellar and Macromolecular Systems," Academic Press, New York (1975).
- W. L. Hinze, Ed., "Organized Assemblies in Chemical Analysis," Vol. 1, JAI Press, Greenwich, pp. 37-105 (1994).
- 12) K. V. C. Laane and A. J. W. G. Visser, *Photochem. Photobio.*, 45, 863 (1987).
- 本水昌二, "機器分析ガイドブック,"日本 分析化学会編, 丸善, pp. 856-879 (1996).
- 14) 石橋信彦, 与座範政訳, "フローインジェク ション分析法,"化学同人 (1983).
- 15) 黒田六郎, 小熊幸一, 中村 洋著, "フローイ ンジェクション分析法,"共立出版 (1990).
- J. Ruzicka and E. H. Hansen, "Flow Injection Analysis," 2nd ed., John Wiley (1988).
- B. Karlberg and G. E. Pacey, "Flow Injection Analysis, A Practical Guide," Elsevier (1989).
- 18) 小熊幸一, ぶんせき, 75; 408 (1989).
- 19) 本水昌二, J. Flow Injection Analysis, 5, 71 (1996).
- 20) 酒井忠雄, ぶんせき, 549 (1992).
- 21) P. E. Zinsli, J. Phys. Chem., 83, 3223 (1979).
- Kondo, H.; Miwa I.; Sunamoto, J. J. Phys. Chem., 86, 4826 (1982).
- 23) T. K. Jain, M. Varshney, and A. Maitra, J. Phys. Chem., 93, 7409 (1989).
- J. Faeder and B. M. Ladanyi, J. Phys. Chem., 104, 1033 (2000).
- D. J. Christopher, J. Yarwood, and P. S. Belton, and B. P. Hills, J. Colloid Interface Sci., 152, 465 (1992).
- 26) F. I. Belyaeva, L. Y. Brovko, N. N. Ugarova, N.

L. Klyachko, A. V. Levashov, K. Martinek, and I. V. Berezin, *Dokl. Akad. Nauk SSSR*, **273**, 494 (1983).

- K. Martinek, A. V. Levashov, N. Klyachko, Y. L. Khmelnitski, and I. V. Berezin, *Eur. J. Biochem.*, 155, 453 (1986).
- 28) N. L. Klachko, M. Y. Rubtsova, A. V. Levashov, E. M. Gavrilova, A. M. Egorov, K. Martinek, and I. V. Berezin, Ann. N. Y. Acad. Sci., 501, 267 (1987).
- K. Martinek, I. V. Berezin, Y. L. Khmelnittski,
 N. L. Klyachko, and A. V. Levashov, *Collect. Czech. Chem. Commun.*, 52, 2589 (1987).
- H. Hoshino and W. L. Hinze, Anal. Chem., 59, 496 (1987).
- S. Igarashi and W. L. Hinze, Anal. Chem., 60, 446 (1988).
- S. Igarashi and W. L. Hinze, W.L. Anal. Chim. Acta, 225, 147 (1989).
- 33) Yeda Research and Development Co., Isr.
 Patent IL59, 263 (29 Jan., 1980) [Chem. Abstr., 100:15173r (1984)].
- 34) Impexa International B. V., Neth. Patent, NL 8201,713 (26 April 1982) [Chem. Abstr., 100:111995f (1984)].
- 35) M. L. Cohen, F. J. Arthen, and S. S. Tseng, Eur.
 Patent Appl. EP 96,749 (28 Dec. 1983), 21 pp.
 [Chem. Abstr., 100:182970 (1984)].
- J. Nishimoto, E. Iwamoto, T. Fujiwara, and T. Kumamaru, J. Chem. Soc. Faraday Trans., 89, 535 (1993).
- E. Iwamoto, T. Kumamaru, Y. Sumitomo, Y. Suzuki, and J. Nishimoto, J. Chem. Soc. Faraday Trans., 91, 627 (1995).
- 38) Imdadullah, T. Fujiwara, and T. Kumamaru, Anal. Chem., 63, 2348 (1991).

- 39) Imdadullah, T. Fujiwara, and T. Kumamaru, Anal. Chim. Acta, 292, 151 (1994).
- 40) D. Brown and J. H. R. Clarke, J. Phys. Chem., 92, 2881 (1988).
- 41) T. Nakashima, T. Fujiwara, and T. Kumamaru, submitted to Langmuir.
- 42) D. F. Evans and H. Wennerström, "The Colloidal Domain: Where Physics, Chemistry, and Technology Meet," Biology. VCH Publishers, New York, p 142 (1994).
- 43) K. Fuke, K. Hashimoto, and S. Iwata, "Advances in Chemical Physics," Vol. 11, ed. by I. Prigogine and S. A. Rice, J. Wiley, New York, pp. 502-523 (1999).
- 44) T. Kato and T. Fujiyama, J. Phys. Chem., 81, 1560 (1977).
- 45) T. Fujiwara, N. Tanimoto, J. Huang, and T. Kumamaru, Anal. Chem., 61, 2803 (1989).
- 46) T. Fujiwara, I. U. Mohammadzai, H. Inoue, and T. Kumamaru, Analyst, 125, 759 (2000).
- Kumamaru, Chem. Lett., 1137 (1991).
- 48) T. Fujiwara, Theingi-Kyaw, and T. Kumamaru, Anal. Sci, 13 (Suppl.), 59 (1997).
- 49) B. H. Robinson and D. C. Steytler, J. Chem. Soc. Faraday Trans. 1, 75, 481 (1979).
- 50) Theingi-Kyaw, S. Kumooka, Y. Okamoto, T. Fujiwara, and T. Kumamaru, Anal. Sci., 15, 293 (1999).
- 51) M.-F. Ruasse, I. B. Blagoeva, R. C. L. Garcia-Rio, J. R. Leis, A. Marques, J. Mejuto, and E. Monnier, Pure & Appl. Chem., 69, 1923 (1997).
- 52) Imdadullah, T. Fujiwara, and T. Kumamaru, Anal. Sci., 7 (Suppl.), 1399 (1991).
- 53) Imdadullah, T. Fujiwara, and T. Kumamaru, Anal. Chem., 65, 421 (1993).

- 54) T. Fujiwara, K. Murayama, Imdadullah, and T. Kumamaru, Microchem. J, 49, 183 (1994).
- 55) T. Fujiwara, I. U. Mohammadzai, K. Murayama, and T. Kumamaru, Anal. Chem., 72, 1715 (2000).
- 56) Theingi-Kyaw, T. Fujiwara, H. Inoue, Y. Okamoto, and T. Kumamaru, Anal. Sci., 14, 203 (1998).
- 57) 藤原,他,過酸化水素の測定方法,第 Y0A261 号 (1999) (特許出願中)
- 58) D.W. Armstrong, Sep. Purif. Methods, 14, 212 (1985).
- 59) U. Pfuller, "Mizellen-Vesikel-Mikroemulsionen. Tensidassoziate und ihre Anwendung in Analytik und Biochemie," Springer, Berlin (1987).
- 60) A. Berthod, O. Nicolas, and M. Porthault, Anal. Chem., 62, 1402 (1990).
- 61) A. Mohammad, S. Anwar, and V. Agrawal, J. Indian Chem. Soc., 76, 452 (1999).
- 47) T. Fujiwara, N. Tanimoto, K. Nakahara, and T. 62) T. Kumamaru, Y. Okamoto, M. Yamamoto, Y. Obata, and K. Onizuka, Anal. Chim. Acta, 232, 389 (1990).
 - 63) Y. Okamoto, T. Takahashi, K. Isobe, and T. Kumamaru, Anal. Sci., 6, 401 (1990).
 - 64) T. Yokovama, T. Watarai, T. Uehara, K. Mizuoka, K. Kohara, M. Kido, and M. Zenki, Fresenius' J. Anal. Chem., 357, 860 (1997).
 - 65) M. Hiraide and K. Hasegawa, Fresenius' J. Anal. Chem., 363, 261 (1999).
 - 66) Y. Okamoto, Y. Nomura, H. Nakamura, K. Iwamaru, T. Fujiwara, and T. Kumamaru, Microchem. J., 65, 341 (2000).

(Received May 15, 2001)

