## Determination of Nitrogen Dioxide in the Atmosphere by Microflow-Injection Absorptiometry with a Portable-Type Flow System after Batchwise Absorption Collection

Lan Ma, Mitsuko Oshima, Toshio Takayanagi and Shoji Motomizu

Department of Chemistry, Faculty of Science, Okayama University, Tsushimanaka, Okayama 700-8530, Japan

#### Abstract

Nitrogen dioxide (NO<sub>2</sub>) in the atmosphere could be determined by developing a simple collection procedure with a small volume of an absorbing solution and a measuring method using a microflow injection system with a small sample size. The absorption efficiency of NO<sub>2</sub> in the atmosphere was improved by using a triethanolamine aqueous solution (TEA, 1~2 g/l) as the absorbing solution: absorption efficiency was more than 95 percent. The absorbed NO<sub>2</sub>, which was converted to NO<sub>3</sub> and NO<sub>2</sub>, was determined by measuring the concentrations of NO<sub>3</sub> and NO<sub>2</sub> in the absorbing solution. A microflow injection analysis ( $\mu$ FIA) with a portable-type FIA system (P/ $\mu$ FIA) was used as a detection system. The limits of detection (LODs) of NO<sub>2</sub> and NO<sub>3</sub> were 10<sup>-8</sup> M and 2 x 10<sup>-8</sup> M, respectively. The azo compound, which was quantitatively produced by diazotizing sulfanilamide with nitrite and coupling the diazonium ion with 1-naphthylethylenediamine in an acidic medium, was used for the determination of NO<sub>3</sub> to NO<sub>2</sub> with a copperized cadmium (Cd/Cu) mini column (0.5 mm i.d. x 5 cm). The molar ratio of NO<sub>2</sub> to NO<sub>3</sub> was ascertained to be 1:1 in the absorbing solution. The NO<sub>2</sub> concentration more than 10 ppb (v/v) in the atmosphere could be determined by the proposed method.

Keywords: microflow injection system, atmosphere, nitrogen dioxide, Cd/Cu mini column, ambient air and indoor air.

#### 1. Introduction

Nitrogen oxides  $(NO_x)$  in the atmosphere increases with an increase in exhaust gas of automobiles, power plants and emission gas from oil combustion systems. In these days, the determination of  $NO_x$  and other oxide ions of nitrogen in atmospheric and aquatic environment is very important to protect our health and the growth of plants. The residence time of  $NO_x$  in the atmosphere seems to be about 8h[1], and it is oxidized to be nitric acid and/or other oxides. The fallout quantity of nitrate on the earth approaches that of sulphate in recent years[2]. Also,  $NO_2$ , as well as  $SO_2$ , gives serious influence to human respiratory organs.

Sampling methods for  $NO_2$  in air are classified into two groups: one is the method based on the introduction of sample gas into an absorption solution at a regular speed (an active sampling method), and the other is based on the transportation of  $NO_2$  by diffusion (a passive sampling method). In the active sampling method, gaseous  $NO_2$  is trapped in an aqueous medium by bubbling air samples through the absorbing solution. Most of standard methods adopted as an official

method are essentially composed of the active sampling method coupled with such detection methods as Saltzman method[3]. chemiluminescence method[4], sodium arsenite method[5], and triethanolamine guaiacol/ sodium metabisulfite (TGS) method[6]. The measurement of NO<sub>2</sub> and/or NO<sub>3</sub> in absorbing solutions can be done in short time, whereas a long interval time is required for absorbing and concentrating NO<sub>2</sub> in the absorbing solutions. Further, apparatuses used are expensive, big, and heavy; therefore, such apparatuses cannot be used outdoor. When it is necessary to measure the environmental concentration of NO2 in a wide area, the passive sampling method is used. In the method described above, NO2 is usually collected by diffusion on absorbent-impregnated screens in badges or capsules. The apparatuses in passive sampling methods are simple, small and less expensive. Several kinds of the passive sampling methods have been used so far: a nitration plate with firebrick[7], a soaked glass beads[8], and a silica gel[9][10] soaked in a triethanolamine (TEA) solution, an alkali filter paper[11], and a TEA filter paper method[12][13]. Recently, the methods with Teflon membrane filter[14], capillary[15] and kieselguhr

(C-22) [16], which are coated with TEA, have been developed.

In both the active and passive sampling methods, average values of  $NO_2$  within 10 min[17]-24 h (the active sampling methods) and 8 h-60 days (the passive sampling method) is used as an exposed amount. Therefore, the development of the  $NO_2$  analytical method on site during a short time is required.

In this work, a new sampling method with a small volume of absorbing solution was developed, followed by measuring the concentrations of NO<sub>2</sub><sup>-</sup> and  $NO_3^-$  in the absorbing solutions by a portabletype microflow injection system (P/µFIA) with a small sample size. By shaking a small volume of the absorbing solution and an atmospheric sample in a separatory funnel, NO<sub>2</sub> can be easily absorbed in the absorbing solution; the  $NO_2$  quantity in the atmosphere can be determined by measuring the concentration of NO<sub>2</sub> and/or NO<sub>3</sub> in the absorbing solution. The absorption maximum of an azo compound, which is formed by the diazotizationcoupling reactions with sulfanilamide and 1naphthylethylenediamine, is 538nm; the wavelength was used for the determination of nitrite ion by a microflow-injection method. By the proposed method, the NO<sub>2</sub> concentrations in indoor and outdoor air were determined easily and rapidly.

### 2. Experimental

### 2.1. Apparatus

A flow diagram of a portable-type microflow injection system (P/µFIA) used in this work is shown in Fig. 1. The measurement of absorbances was performed by a visible absorptiometry. The detector was incorporated in the system, and was composed of a diode sensor, a flow cell, an interference filter of 530 nm and a light emitting diode (LED;  $\lambda_{max} = 525$  nm) as a light source. The light path of the flow cell was 10 mm (0.8 mm i.d., capacity: 5.0 µl). Peaks were recorded with a chart strip recorder or a notebook computer. A carrier solution (CS) and a reagent solution (RS) were propelled with a double plunger micro pump (Asahi Techneion), in which one stroke of the plunger can propel 2.5 µl of solutions. In the proposed method, each flow rate of the carrier and the reagent solution was fixed to 50  $\mu$ l/min. A six-way value with a sample loop (20 µl) was used to inject sample solutions into the carrier stream, which flowed downstream and merged with a reagent stream, and flowed into a 75 cm of 0.25 mm i. d. reaction coil. The PTFE tubing of an inner diameter of 0.25 mm was used as a reaction tubing and a connecting tubing. All of the system components of P/µFIA, except for the recording apparatus, were packed in a small box (16 cm width x 16 cm height x 32 cm depth), and worked with a 12 V battery. The

 $P/\mu$ FIA system was equipped with a controller for the adjustment of a flow rate, temperature of the reaction compartment and a dynamic range of the detector. The weight of the system was 7.5 kg. Therefore, the system can be moved easily everywhere, and can be used even outdoors.



Fig.1. Flow diagrams for nitrite and nitrate determination. (a) Nitrite determination; (b) Nitrate determination. CS : (a)  $H_{2O}$  or triethanolamine (TEA) (1 g or 2 g/l),

(b)  $10^{-3}$  M EDTA + NaOH (pH=8.1 ~ 8.4); RS : sulfanilamide (20 g/l) + N-(1-naphthyl)ethylenediamine (NED) (0.5 g/l) + conc. HCl(25 ml/l); P : pump (each flow rate , 50 µl/min); S : sample injection; V : six way injection valve (25 µl); CRC : cadmium reduction column (0.5 mm i.d. x 10 cm); RC : reaction coil (0.25 mm i.d. x 75cm); D : detector (LED 525 nm, interference filter 538 nm);

M: mixing joint; R: recorder; W: waste.

### 2.2. Reagents

All chemicals used in this work were of analytical reagent grade, and purified water with a MilliQ Labo (Millipore) was used for preparing solutions.

Triethanolamine (TEA) absorbing solution (0.1 % and 0.2 % w/v): The stock solution was prepared by dissolving 20 g of triethanolamine in 1 l of water. Then 5 ml or 10 ml of the stock solution were diluted with purified water to 100 ml to give a 0.1% and a 0.2% solution, respectively.

Reagent solution: A reagent solution was prepared to give a 100 ml solution containing 2 g sulfanilamide, 0.05 g N-(1-naphthyl) ethylenediamine and 2.5 ml of concentrated hydrochloric acid.

Carrier solution: Purified water or the TEA absorbing solution (0.2 % w/v) was used in the system (a) of Fig.1. Ethylenediaminetetraacetic acid (EDTA) disodium salt (Wako Co.) solution was used as a carrier in the system (b) of Fig.2. The stock solution was prepared by adding 2.92 g of EDTA disodium salt to 100 ml purified water to give a 0.1 M solution. Then, 3 ml of the stock EDTA solution and 297 ml of purified water were mixed and the pH was adjusted to 8.1 ~ 8.4 by adding a small volume of 0.1 M solium hydroxide

solution.

Standard nitrite solution: The stock solution was prepared by dissolving 0.345 g of sodium nitrite dried at 110°C for 3 h in 100 ml of water to give a 5.0 x  $10^{-2}$  M solution. This solution was diluted accurately using the purified water or the TEA solution to give working solutions of nitrite.

Standard nitrate solution: The stock solution was prepared by dissolving 0.425 g of sodium nitrate dried at 110°C for 3 h in 100 ml of water to give a 5.0 x  $10^{-2}$  M solution. This solution was diluted accurately using the purified water or the TEA solution to give working solutions of nitrate.

2.3. Preparation of reducing mini column packed with copperized cadmium

A copperized cadmium column was prepared as follows: powdered cadmium (Wako Pure Chem., 60-80 mesh) was copperized according to the procedure of the Japanese Industrial Standard (JIS K-0101-1991), and the copperized cadmium obtained was packed in a silica tubing (0.53 mm i.d. x 10 cm).

2.4. Procedure for the collection of  $NO_2$  from air and the measurement of  $NO_2$  and  $NO_3$ 

Air samples were pumped through separatory funnels (260 ml) for 2 min in order to sufficiently exchange air in the separatory funnels for the sample. Then, 2ml of an absorption solution was added into each separatory funnel, and the separatory funnels were shaken vigorously for 4 min. After standing for 1 min, nitrate and/or nitrite ion in the absorbing solutions were measured by the proposed  $\mu$ FIA.

### 3. Results and Discussion

### 3.1. Preparation of calibration graph by $\mu$ FIA

The concentrations of nitrate and nitrite ions in absorbing solutions, which absorbed NO<sub>2</sub> in the atmosphere, were determined by the P/ $\mu$ FIA system, when the molar ratio of nitrate ion to nitrite ion in the absorbing solution was determined. When only the nitrite ion in the absorbing solutions was determined, the same solution as the absorbing solution was used as the carrier in the P/ $\mu$ FIA system.

Nitrite has often been determined spectrophotometrically on the basis of a diazotization-coupling reaction with sulfanilamide and N-(I-naphthyl)ethylenediamine; the azo compound thus produced was measured at about 540 nm. Such a color development reaction was investigated by using the  $P/\mu$ FIA system at 525 nm of LED, the wavelength being a little shorter than the maximum absorption wavelength of the azo compound. Typical flow signals for trace amounts of NO<sub>2</sub><sup>-</sup> are shown in Fig. 2 (a). The sensitivity obtained by the proposed method was enough for the determination of nitrite ion in the atmospheric samples, as well as in river and seawater samples. The limit of detection (LOD) of NO<sub>2</sub> corresponding to the signal to noise ratio of 3 was about 10<sup>-8</sup> M NO<sub>2</sub><sup>-</sup>. Nitrate was determined by using the same reagent solution as in nitrite and 10<sup>-3</sup> M EDTA (pH 8.1  $\sim$  8.4) as a carrier. Nitrate was reduced to NO<sub>2</sub> with a copperized cadmium (Cd/ Cu) column installed in the carrier stream just after the sample injection valve. The typical flow signals for trace amounts of  $NO_3$  are shown in Fig. 2 (b). A reducing mini column of Cd/Cu developed for this purpose was used. LOD of NO3 was about 2 x 10<sup>-8</sup> M.



Fig.2. Flow signals for nitrite (a) and nitrate (b) by  $\mu$ FIA

(a) CS :  $H_2O$ ; Sample ([NO<sub>2</sub><sup>-</sup>]/10<sup>-8</sup> M):(1) 0, (2) 2.0, (3) 4.0, (4) 6.0; (b) CS :10<sup>-3</sup> M EDTA + NaOH (pH=8.1~ 8.4); Sample ([NO<sub>3</sub><sup>-</sup>]/10<sup>-7</sup> M):(5) 0, (6) 1.0, (7) 2.0, (8) 4.0, (9) 6.0.

3.2. Determination of nitrogen dioxide in the atmosphere

Nitrogen dioxide in the atmosphere can be determined by using the proposed  $\mu$ FIA, when it can be concentrated in the absorbing solution by 100-200 folds as a volume ratio from the atmosphere which contains NO<sub>2</sub> corresponding to more than about one tenth of the WHO Guideline of an ambient environmental quality standard (0.08 ~ 0.21 ppm as NO<sub>2</sub>). As is shown in the following equation, NO<sub>2</sub> in the atmosphere can be converted into nitric and nitrous acid when it dissolves in water:

$$2NO_2 + H_2O \rightarrow HNO_3 + HNO_2$$

3.3. Absorption efficiency of NO<sub>2</sub> with various kinds of absorbing solutions

Several absorbing solutions, such as the aqueous solutions of triethanolamine (TEA), sodium hydrogen carbonate and sodium hydroxide, have been used so far in the active sampling methods for the spectrophotometric determination of  $NO_2$  in the atmosphere. In this work, first, pure water was examined as the absorbing solution. The absorption efficiency was determined by repeating the absorption procedure several times using the same air sample with each 2 ml portion of the absorbing solution. The results obtained were shown in Table 1: only 54% of  $NO_2$  in the atmosphere was

Table 1. Absorption efficiency of  $NO_2$  from air using various kinds of absorbing solutions

| Absorbing solutions                      | Absorption<br>efficiency <sup>a)</sup> (%) | NO <sub>2</sub> content <sup>a)</sup><br>(ppm) |
|------------------------------------------|--------------------------------------------|------------------------------------------------|
| (1) Pure water                           | 54                                         | 0.053                                          |
| (2) 10 <sup>-1</sup> M NaOH              | 30                                         | 0.053                                          |
| (3) 10 <sup>-3</sup> M EDTA<br>(pH = 10) | 56                                         | 0.053                                          |
| (4) TEA (g/l)                            |                                            |                                                |
| 0                                        | 52                                         | 0.030                                          |
| 0.5                                      | 80                                         | 0.030                                          |
| 1.0                                      | 95                                         | 0.030                                          |
| 2.0                                      | >98                                        | 0.030                                          |

a) Air sample: ambient air in a room. The  $NO_2$  contents were obtained by totaling each content of absorbed  $NO_2$  in each absorbing solution obtained by repeating several times the absorbing procedures. The contents of  $NO_2$  in the air samples used in this experiments were not necessarily identical, because the experiments were carried out on different days.

absorbed with pure water. For improving the absorption efficiency, other absorbing solutions were also studied. The absorption of NO<sub>2</sub> from air has been carried out with an alkaline solution of 0.1 M NaOH[18]-[20] . Secondly, 0.1M NaOH was studied as the absorbing solution. The absorption efficiency was less than pure water, and was only 30%. The absorption efficiency was almost the same as that indicated by Yamate[21], who reported that the absorption efficiency of 0.1M NaOH for NO2 was 35% in the standard measuring method proclaimed by the US Environmental Protection Agency (EPA)[22]. The next candidate was 10<sup>-3</sup> M EDTA (pH 8.2), which was used as a carrier for nitrate determination. The absorption efficiency was 56%, being better than the pure water and the 0.1 M NaOH solution. The last one was a TEA solution. The good affinity of TEA for NO<sub>2</sub> has been reported by Levaggi et al.[7]. Later, TEA has been used for quantitative collection of NO<sub>2</sub> from air. The absorption efficiency of TEA has been said to

be about 95~98%. The concentrations of TEA were examined by varying from 0.5 to 2.0 g/l. By using the TEA solution of 2.0 g/l, the absorption efficiency of more than 98% could be achieved as shown in Table 1. In further experiments, 2.0 g/l TEA solution was used as the absorbing solution, for the determination of NO<sub>2</sub>, and 1.0 g/l TEA solution was used when NO<sub>2</sub> and NO<sub>3</sub> were determined simultaneously, because 2.0 g/l TEA can damage the reducing efficiency of copperized cadmium.

# 3.4. Shaking time for the collection of $NO_2$ with TEA solution

The effect of shaking time on the absorption efficiency of NO<sub>2</sub> was examined: the result obtained for NO<sub>2</sub> in the absorbing solution is shown in Fig. 3. When 2g/I TEA solution was used as the absorbing solution, the absorption efficiency became almost



Fig. 3. Effect of shaking time on the absorption efficiency of  $NO_2$ Air sample: sampled in a room at the same time, 260 ml; Absorbing solution: 2 g/l TEA, 2 ml. Peak height was obtained for  $NO_2^-$  in the

constant by shaking for more than 4 min, whereas 20 min was needed when pure water was used as the absorbing solution.

absorbing solutions.

# 3.5. Reproducibility for the collection of $NO_2$ with TEA solution

The reproducibility of the proposed collection method was examined by measuring the NO<sub>2</sub> concentration in a 1 g/l and a 2 g/l TEA absorbing solution by using the practical air samples at concentration levels of  $10^{-8}$  M of NO<sub>2</sub>, which were sampled in our laboratory. The results are shown in Table 2. The standard deviations were in the ranges of 0.6~3.9% and 3~13%, with 2 g/l TEA, and 1 g/l TEA, respectively. From these results, 2 g/l TEA is recommended. However, higher concentration of TEA could damage the copperized cadmium

Table 2. Determination of  $NO_2$  in practical air samples

| No.*1 | Peak height*2   | <sup>2</sup> SD | RSD*3 | [NO <sub>2</sub> <sup>-</sup> ] | NO2*4 |
|-------|-----------------|-----------------|-------|---------------------------------|-------|
|       | (cm)            |                 | (%)   | 10 <sup>-8</sup> M              | (ppm) |
| 1     | $1.11 \pm 0.06$ | 0.03            | 3.1   | 3.7                             | 0.013 |
| 2     | $1.24 \pm 0.09$ | 0.05            | 3.9   | 4.5                             | 0.015 |
| 3     | $1.22 \pm 0.06$ | 0.03            | 2.8   | 4.3                             | 0.015 |
| 4     | $1.31 \pm 0.01$ | 0.01            | 0.6   | 4.8                             | 0.016 |
| 5     | $1.19 \pm 0.06$ | 0.03            | 2.4   | 4.1                             | 0.014 |
| 6     | $1.97 \pm 0.29$ | 0.25            | 12.5  | 9.5                             | 0.032 |
| 7     | $1.77 \pm 0.17$ | 0.10            | 5.7   | 8.4                             | 0.028 |
| 8     | $1.85 \pm 0.22$ | 0.11            | 6.2   | 8.9                             | 0.030 |
| 9     | $1.61 \pm 0.09$ | 0.05            | 3.0   | 7.7                             | 0.026 |

Air sample: 260 ml; absorbing solution (1g/l or 2 g/l TEA, 2 ml); concentration ratio was 130.

- \*1 Samples 1-5 were sampled at a time, and shaked with 2 ml of 2 g/l TEA. Samples 6-9 were sampled at a time on different day and shaked with 2 ml of 1 g/l TEA.
- \*2 Each absorbing solution was measured seven times by μFIA, and the mean values of peak height with the largest deviation were shown.

\*<sup>3</sup> Relative standard deviation of seven measurements.

\*<sup>4</sup> NO<sub>2</sub> contents in air (ppm), which were calculated on the assumption that NO<sub>2</sub><sup>-</sup> and NO<sub>3</sub><sup>-</sup> are the same concentration in the absorbing solutions.

column. Therefore, 1 g/l TEA was used only when  $NO_2$  and  $NO_3$  is measured simultaneously.

The stability of NO<sub>2</sub> and NO<sub>3</sub> absorbed in the TEA absorbing solution was tested. In the TEA absorbing solution, NO<sub>2</sub> and NO<sub>3</sub> were very stable at room temperature for a long time, and their concentrations were not changed at least for 3days. The LODs for NO<sub>2</sub> and NO<sub>3</sub> in the proposed  $\mu$ FIA were 1 x 10<sup>8</sup> M and 2 x 10<sup>8</sup> M, respectively, and the overall LODs for NO<sub>2</sub> in the atmosphere was 0.002 ppm as NO<sub>2</sub> and 0.004 ppm as NO<sub>3</sub>, when NO<sub>2</sub> in 260 ml air was collected in 2 ml of TEA solution. The sensitivity was enough for measuring more than one tenth of the NO<sub>2</sub> value in the atmosphere regulated by WHO and others.

3.6. Nitrogen oxide species existing in the TEA absorbing solution

Levaggi et al.[7] reported that  $NO_2$  absorbed in TEA absorbing solution changed to nitrite and nitrate ester or salts with TEA. Okita et al.[23] reported that the collection of  $NO_2$  into TEA solutions was not done through the reaction of HNO<sub>2</sub> and HNO<sub>3</sub> with TEA as reported by Levaggi

et al.[7], and was carried out by direct absorption into the TEA solution. In the present investigation,  $NO_2$  was easily absorbed in TEA solution in a short time, and the concentrations of  $NO_2$  and  $NO_3$  in the solution were almost identical as is shown in Table 3. Therefore, we consider the reaction in the alkaline solution of TEA is carried out by a simple disproportionation/ acid-base reaction as follows:

 $2NO_2 + 2TEA \rightarrow 2TEA H^+ + NO_2^- + NO_3^-$ 

Table 3. Determination of the molar ratio of nitrate and nitrite ions in absorbing solution

| Peak height         | RSD | [NO <sub>2</sub> <sup>-</sup> ]+[NO <sub>3</sub> <sup>-</sup> ] | [NO <sub>2</sub> <sup>-</sup> ] | NO2*  | <sup>1</sup> [NO <sub>3</sub> <sup>-</sup> ]* |
|---------------------|-----|-----------------------------------------------------------------|---------------------------------|-------|-----------------------------------------------|
| (cm)                | (%) | 10 <sup>-7</sup> M                                              | 10 <sup>-7</sup> M              | (ppm) | [NO <sub>2</sub> <sup>-</sup> ]               |
| (a) $5.43 \pm 0.08$ | 1.3 |                                                                 | 5.08                            | 0.18  | 1 19                                          |
| $2.53 \pm 0.03$     | 1.0 | 11.1                                                            |                                 | 0.20  | 1.17                                          |
| (b) $5.61 \pm 0.04$ | 0.6 |                                                                 | 5.26                            | 0.19  | 1 10                                          |
| $2.66 \pm 0.04$     | 1.2 | 11.5                                                            |                                 | 0.21  | 1.19                                          |
| (c) $5.59 \pm 0.09$ | 1.6 |                                                                 | 5.24                            | 0.19  | 1 23                                          |
| $2.73 \pm 0.12$     | 4.0 | 11.7                                                            |                                 | 0.21  | 1.43                                          |
| (d) $4.22 \pm 0.12$ | 2.5 |                                                                 | 3.95                            | 0.14  | 1 22                                          |
| $1.93 \pm 0.08$     | 3.5 | 9.2                                                             |                                 | 0.17  | 1.33                                          |
| (e) $4.69 \pm 0.14$ | 2.7 |                                                                 | 4.39                            | 0.16  | 1 12                                          |
| $1.96 \pm 0.03$     | 1.0 | 9.3                                                             |                                 | 0.17  | 1.15                                          |

Air samples used were sampled in a room, and 260 ml of the sample was shaken with 2 ml TEA absorbing solution.  $*^{1}$ Contents of NO<sub>2</sub> in air samples calculated by using NO<sub>2</sub><sup>-</sup> or NO<sub>3</sub><sup>-</sup> concentration.

 $*^{2}$ Molar ratio of the concentration of NO<sub>3</sub><sup>-</sup> to NO<sub>2</sub><sup>-</sup> in the absorbing solutions.

As a result, either  $NO_2$  or  $NO_3$  in the TEA absorbing solution is enough to be measured for the determination of  $NO_2$  in the atmosphere. As the results obtained in this work, the nitrite determination in the absorbing solution with 2 g/l TEA is recommended with respect of high sensitivity, simple flow system and good absorption efficiency.

# 3.7. Determination of NO<sub>2</sub> in indoor air and outdoor air

The concentrations of NO<sub>2</sub> in indoor air become higher than in outdoor air because fossil fuel is used for heating in winter. Indoor air pollution is very harmful since most humans spend 80% of their time in enclosed indoor space, and inhale about 1 x  $10^4$  l of air per day to live[24]. It is found that the NO<sub>2</sub> concentration increased to (0.32 ~ 0.38) ppm when a gas stove was burned for 2 h, as is shown in Table 4. The concentrations of  $NO_2$  in ambient air were also shown in Table 4. The  $NO_2$  concentrations were about 0.1 ppm, which corresponds to the lowest values of WHO Guideline.

Table 4. Determination of  $NO_2$  in rooms

| No.*1 | Peak height      | RSD | [NO <sub>2</sub> <sup>-</sup> ] | NO2*2 |
|-------|------------------|-----|---------------------------------|-------|
|       | (cm)             | (%) | 10 <sup>-7</sup> M              | (ppm) |
| (1)   | $10.73 \pm 0.13$ | 0.9 | 10.10                           | 0.32  |
| (2)   | $10.82 \pm 0.23$ | 1.5 | 10.15                           | 0.38  |
| (3)   | $11.33 \pm 0.23$ | 1.5 | 10.64                           | 0.38  |
| (4)   | $10.40 \pm 0.27$ | 1.4 | 9.77                            | 0.36  |
| (5)   | $2.71 \pm 0.11$  | 2.0 | 1.31                            | 0.044 |
| (6)   | $2.83 \pm 0.11$  | 1.6 | 1.36                            | 0.046 |
| (7)   | $3.41 \pm 0.13$  | 2.4 | 1.64                            | 0.055 |
| (8)   | $3.04 \pm 0.16$  | 3.0 | 1.47                            | 0.050 |
| (9)   | $2.81 \pm 0.23$  | 6.0 | 1.36                            | 0.046 |
| (10)  | $2.62 \pm 0.13$  | 3.0 | 1.26                            | 0.042 |
| (11)  | $3.23 \pm 0.13$  | 2.9 | 2.00                            | 0.12  |
| (12)  | $2.28 \pm 0.08$  | 2.5 | 1.70                            | 0.10  |

<sup>\*1</sup> Samples (1)-(4): a gas stove was burned in a room of 24 m<sup>2</sup> for 2 h.

Samples (5)-(10): a gas stove was not used.

Samples (11)-(12): ambient air sampled outdoors, where car traffic was relatively heavy.

\*2 The concentrations of NO<sub>2</sub> in air samples, which were calculated by using the concentrations of NO<sub>2</sub><sup>-</sup> in the absorbing solutions on the assumption that NO<sub>2</sub><sup>-</sup> was present at the same concentration of NO<sub>3</sub><sup>-</sup>.

#### 4. Conclusion

In this work, a rapid and simple sampling method with a small volume of TEA solution as an absorbing solution was developed; by coupling the propposed sampling method with a µFIA method the concentrations of NO<sub>2</sub> in the atmosphere could be determined using P/µFIA system with a small sample size. Thus, the concentration of  $NO_2$  could be measured on site for a short time by the proposed method. The overall LOD for measuring atmospheric  $NO_2$ was 0.002 ppm, which corresponds to less than one tenth of WHO (0.08  $\sim$ 0.21 ppm).

### References

- N. Washida, "How does earth environment", edited by the Chemical Society of Japan, Dainippon Tosho, Tokyo, **1993**, p.39.
- [2] T. Okita, "Earth environment and human being", Energy Saving Center, Tokyo, 1990, p.162.
- [3] B. E. Saltzman, Anal. Chem., 26 (1954) 1949.
- [4] A. Fontijin, A. J. Sabadell, and R. Ronco, *ibid.*, 42 (1970) 575.
- [5] E. L. Merryman, C. W. Spicer, and A. Levy, *Environ. Sci. Technol.*, 7 (1973) 1056.
- [6] J. Mulik, et al., Intern. J. Environ. Anal. Chem., 3 (1974) 333.
- [7] D. A. Levaggi, W. Siu, M. Feldstein, and E. L. Kothny, *Environ. Sci. Technol.*, 6 (1972) 250.
- [8] S. Sato, I. Inoue, K. Ishizuka, and M. Ichihashi, Kogai-to kagaku, 13 (1977) 292.
- [9] Y. Nishikawa, K. Taguchi, Y. Tsujing and K. Kuwato, J. Chromatogr., 370 (1986) 121.
- [10] Y. Nishikawa, K. Taguchi, J. Chromatogr., 396 (1987) 251.
- [11] S. Fukui, bunseki kagaku, 12 (1963) 1005.
- [12] S. Sato, I. Inoue, K. Ishizuka, Kougai and Taisaku, 13 (1976) 52.
- [13] Y. Yanagisawa, and H. Nishimura, Environ. Int., 8 (1982) 235.
- [14] Y. Yanagisawa, H. Nishimura, Taiki Osen Gakkaishi, 15 (1980) 4.
- [15] S. Sato, Y. Miyazaki, Niigata Rikagaku, 8 (1982) 44.
- [16] H. Kondo, M. Yanagawa, Zenkoku Kogaiken Kaishi, 11 (1986) 7.
- [17] M. Nonomura, T. Hobo, J. Chromatogr. A., 804 (1998) 151.
- [18] H. D. Axelrod, R. A. II. Pickett, and N. A. Engel, Anal. Chem., 47 (1975) 2021.
- [19] C. Huygen, and P. H. Steerman, Atmos. Environ, 5 (1971) 887.
- [20] P. C. Varma, C. Jha, S. Mian, S. B. Sinha, V. S. Gupta, *Indian J. Environ. Prot.*, **10** (1990) 532.
- [21] N. Yamate, Netsu Kanri To Kogai, 28 (1976) 24.
- [22] EPA Federal Register, **36** (1971) 8187, April 30.
- [23] T. Okita, S. Ohta, M. Fukui, H. Yatabe, T. Akei, and Y. Katayama, Bull. Fac. Eng. Hokkaido Univ., 113 (1983) 107.
- [24] W. T. Jung, and D. H. Sohn, Arch. Pharm. Res., 15 (1992) 109.

(Received August 30, 2000) (Accepted October 2, 2000)