高活性試薬のオンライン調製法と流れ分析への応用

田中 秀治

徳島大学薬学部, 〒770 徳島市庄町 1-78-1

On-line Generation Methods of Highly Reactive Reagents and Their Application to Flow Analyses

Hideji Tanaka

Faculty of Pharmaceutical Sciences, The University of Tokushima, Shomachi 1-78-1, Tokushima 770, Japan.

On-line reagent generation method affords great advantages to flow analyses: it enables the application of highly reactive (thus unstable) or poisonous reagents which are impracticable under normal analytical condition, because the processes from reagent generation to its use can be done in short time in (semi-)closed flow system isolated from the atmosphere. This paper reviews on-line reagent generation methods and their application to flow analyses such as FIA and HPLC. The reactions for reagent generation were described by classifying them into three categories: 1) chemical reaction including that at solid phase reactor, 2) photochemical reaction based on UV irradiation and 3) electrochemical reaction using flow-through electrolysis device.

1. はじめに

フローインジェクション分析法(FIA)をはじめ流れ系を利用する分析法では、検出法に適し た前処理法(分離、濃縮、化学形態の変換等)を確立し、これを流れ系へ組み入れオンライン 化することは、感度と選択性のさらなる向上に加え、測定の省力化及び迅速化のために有効 である。このようなオンライン前処理技術の進展は著しく、例えば多孔質膜を利用する溶媒抽 出や気液分離、ミニカラムを利用する分離・濃縮、湿式あるいは固相反応を利用する目的成 分の化学形態の変換など、数多くの報告がなされている。

一方,流れ分析法が高い再現精度を有すること及び一連の(準)閉鎖系の中で行えることに 着目すると,流れ系内で試薬を連続調製し前処理部へとオンライン供給することにより,従来 の分析法ではほとんど用いられなかった試薬の利用が実現できると期待される。このような試 薬としては、1)化学的活性が高くその調製条件に制約があり保存も困難であるもの、2)毒性 が高くその取り扱いに注意を要するもの、が挙げられる。本総説では、筆者らのグループによ る研究成果も含め、試薬のオンライン調製法を、1)化学的方法、2)光化学的方法、3)電気化 学的方法の三つに分類し、その原理と応用について解説する。

2. 化学反応を利用する試薬調製法

ここには複数のチャンネルから送液される試液をマニホルド中で混合し溶液内化学反応を 行わせることにより試薬を調製する方法や流れ系に組み入れられたミニカラム内で固相反応 を行うことにより試薬を調製する方法を含める。

2-1) 塩化シアンを用いるニコチン酸類の定量

ビタミンB群に属するニコチン酸(ナイアシン) nicotinic acid とニコチン酸アミド(ナイアシン アミド) nicotinamide の一般的な定量法の一つとしてケーニッヒ(König)比色法がある。これ は試料溶液にプロムシアン(BrCN)水溶液を添加後,芳香族アミンと反応させることによって 生じる黄色物質(グルタコン酸ジアルデヒド誘導体)を比色定量するものであるが, BrCN が 猛毒であるため取り扱いに注意を要する。 Ge ら¹は Technicon 社の AutoAnalyzer IIを 用いて,クロラミンT (Chloramine T)とシアン化カリウム(KCN)を流れ系内で反応させること

Fig. 1 Flow scheme for nicotinic acid determination, cyanogen chloride method (Ref. 1)

により塩化シアン(ClCN)を生成させ、ケーニッヒ法により各種食品中の10-1000 mg kg⁻¹レベ ルのニコチン酸を定量した(Fig. 1)。本法では BrCN 試液に比べより安定で取り扱いやすい KCN 試液が使用でき、ニコチン酸含量の測定結果についても従来法のそれとの間に有意な 差が認められなかった。LidzeyとSavage²もAutoAnalyzer IIを用いる気節分析法により、 紙巻きたばこの煙中(たばこのフィルターに保持された成分を希硫酸で抽出)のニコチン nicotine の定量を行った。彼らは ClCN の調製のためにチオシアン酸カリウムと次亜塩素酸 ナトリウムを用いた。

2-2) 固相反応を利用する酸化還元試薬の調製

固相反応を利用した酸化還元試薬のオンライン調製法については、すでに 1980 年代の前 半に Schothorst らのグループによる一連の報告が見られる。彼らはジョーンズ(Jones)還元 器の原理に基づき、FIA マニホルド中に組み入れた亜鉛アマルガム充填カラムによって Cr(Ⅲ)、V(Ⅲ)あるいはU(Ⅳ)をそれぞれ Cr(Ⅱ),³⁵ V(Ⅱ)^{35,6}あるいはU(Ⅲ)⁷に還元し、これ らの強力な還元力を利用してヨウ素酸塩、硝酸塩、亜硝酸塩等の定量を行った(試薬の光吸 収またはその酸化物の電流を測定)。これらの反応系及びマニホルドはごくシンプルなもので あるが、不安定試薬の調製の場としての流れ系の利点に着目した点で特筆できる。

亜硝酸塩標準液を用いるジアゾ化反応は芳香族第一アミンの定量に用いられている。 Romero 6⁸ はサルファ剤の一種であるスルファジアジン sulfadiazine (抗菌薬)の定量を目 的とする,亜硝酸イオンのオンライン調製過程を導入した FIA システムを報告した(Fig. 2)。こ こでは、カドミウム還元法(Cd・Cu カラムを使用)により硝酸塩水溶液から調製された亜硝酸イ オンによってスルファジアジンをジアゾ化し、生成したジアゾニウム塩と N-(1-ナフチル)エチ レンジアミンとのカップリングによって生じるアゾ色素の吸収を 542 nm で測定する(Bratton-Marshall 法)。本法では1時間あたり72 試料の測定が可能であり、0.5-50 mg dm⁻³の範囲

で直線検量線が得られた。彼らはさらに錠剤 の溶出試験器(回転バスケット法)をこの FIA 装置に接続することにより、スルファジアジン 製剤の溶出試験法へと応用した。同試験法で は所定時間ごとに試験液が採取・分析される が、FIA はこの目的のために適した分析法で あると言える。

なお,ジアゾ化反応は亜硝酸イオンの定量 にも用いられている。硝酸イオンを定量するた

Fig.2 FIA assemblies for the determination of sulfadiazine (Ref. 8). sr, solid phase reactor; SDZ, sulfadiazine soln; P, peristaltic pump; w, waste; D, spectrophotometric detector; R, recorder. めに流れ系内に設置された還元カラムでこれを亜硝酸イオンに変換する例については、他 にいくつかの報告がある。

3. 光化学反応を利用する試薬調製法

Niederländerら⁹は逆相 HPLCの検出 法として光化学反応によって生じた一重 項酸素を利用する光誘起/ジオキセタン 化学発光法を報告した。一重項酸素の 寿命は非常に短く生成後直ちに消費さ れるため、試薬というよりも反応中間体に 位置付けされるとも言えるが、比較的ユニ ークな方法と思われるので紹介したい。 反応の原理を Fig. 3 にシステムの概略を Fig. 4 にそれぞれ示す。ポストカラム部に 設置された光化学反応コイル(内径 0.33 mm, 長さ 5 m)中で, 中圧水銀ランプか らの紫外線によって励起された目的成分 (Analyte)からのエネルギー移動によって、 その量に対応する一重項酸素(O₂(¹ △ _g)) を生成させる(副反応防止のため、水銀ラ ンプと反応コイルとの間に KI 溶液を送液

Fig. 3 Dioxetane CL based on photochemical generation of singlet oxygen (Ref. 9).

Table 1 Comparison of dioxetane CL detection limits (S/N=3) and UV detection method (Ref. 9).

Analyte	Detection limit (M)		
	CL detection	UV detection $(\lambda > 260 \text{ nm})$	
Anthracene	1.5×10^{-8}	2.0×10^{-7}	
9-Acetylanthracene	2.0×10^{-8}	2.5×10^{-7}	
1,4-Dinitronaphthalene	5.0×10^{-7}	2.5×10^{-7}	
1,4-Dibromonaphthalene	2.0×10^{-7}	1.5×10^{-7}	
1,2,3,4-Tetrachloronaphthalene	1.5×10^{-7}	2.5×10^{-7}	
Phenanthraquinone	3.0×10^{-8}	⁸ -01×0.1	
2,2'-Dibromobiphenyl	2.0×10^{-7}	2.0×10^{-7}	
4,4'-Dichlorobiphenyl	1.0×10 ⁻⁷	5.0×10^{-8}	
Rose Bengal	5.0×10^{-9}	2.0×10^{-8}	
1,8-Dinitroanthraquinone	3.0×10 ⁻⁶	1.0×10^{-7}	

し、270 nm 以下の紫外線をカットしてある)。これをエチレン結合を有する物質(Reagent: 1,2-diethoxyethene)と反応させ、生じたジオキセタン置換体(Dioxetane: 3,4-diethoxy-1,2dioxetane)を蛍光物質(Fluorophore: 9,10-dibromoanthracene)と混合後、70 ℃に保たれ た検出器のフローセルに導いて熱分解する。励起状態の分解生成物(³Carbonyl^{*}: ethyl folmate)により蛍光物質が励起され、これが発する蛍光が測定される。各種縮合環芳香族炭 化木素あるいはその誘導体などをモデル化合物として用いた実験では、検出限界 10⁻⁸-10⁻⁷ mol dm⁻³ (Table 1)、ダイナミックレンジ2桁以上と、UV 検出法と同程度の性能であった。さ らなる量子収率の向上が望まれるものの、強いUV吸収を示す物質でも本法では全く化学発 光を示さないものがあり、このことが選択性のより高い測定に役立つと彼らは主張している。 Niederländer ら¹⁰は逆相あるいは順相 HPLC における同検出法の分析諸条件をさらに詳 細に検討し、魚油中のポリ塩化ビフェニル類(PCB)の分離・定量に応用した。ここでは高圧木 銀ランプからの紫外線を反射鏡と石英コーンを用いて集光し、光ファイバーを通して軸方向 から溶液に照射する新しい光化学反応器が開発された。この反応器の性能は彼らの前報の ものに比べて感度や S/N 比の点で優れているとは言えないが、反応時間を 1/10 程度(8 s 以 下)に短縮できる長所がある。

4. 電気化学反応を利用する試薬調製法

4-1) 各種酸化還元試薬の電解調製とその応用

臭素は不飽和結合への付加能やフェノール性水酸基に対するオルト・パラ置換能を有し, 化学分析において重要な試薬の一つである。しかし,揮散しやすい上に毒性もあり,取り扱 いにくい試薬でもある(日本薬局方では臭素酸カリウムを過剰の臭化カリウムに溶解させてお き(Koppeschaar 溶液),用時強酸性にすることで前者の量に対応する臭素を発生させる方 法が以前から採用されている)。一方,臭化物イオンの電解酸化によって臭素を発生させる 方法も古くから検討されてきた。KingとKissinger¹¹は HPLC のポストカラム部に導入したフ ロー式電解装置で発生させた臭素を用い,プロスタグランジン等を残余 Br2の電流測定検出 により定量する方法を報告した。Kok らは同様の原理を用いて,フェノールエーテル類 (morphine, codeine, noscapine, papaverine(いずれも麻薬性鎮痛薬)),¹² 尿及び血漿中の チオエーテル類(ampicillin(ペニシリン類), ranitidine(抗潰瘍薬))¹³の定量を行った。Kok ら¹⁴はまた,血漿中のフェノチアジン誘導体(thioridazine, chlorpromazine, levomepromazine, propericiazine(以上,向精神薬), promethazine(抗ヒスタミン薬))やそ の代謝生成物の分離・定量法も検討し、臭素化によってこれらの物質の蛍光強度が増加(2 -19倍)することを明らかにした。Isaksson 6¹⁵は、別流路内で電解調製された臭素溶液と カラムからの溶出液を混合させる方法で酸化型・還元型 glutathione, lysozyme, cytochrome C 等の定量を行った。

ニンビドリン(ninhidrin)反応は各種蛍光試薬を用いる方法に比べると検出限界の点で劣る ものの、アミノ酸定量法として広く知られた方法である。ここでは、まず還元ニンビドリンの生成 が必要であり、ニンビドリン試薬中に各種還元剤を添加する方法や還元ニンビドリン (hydrindantin)を共存させる方法が採用されている。HoriとKihara¹⁶は空気酸化されやす いhydrindantinをより安定なninhidrinから用時調製するための電解装置(Fig. 5)を製作し た。定電流(1.75 mA; 流速 0.25 cm³ min⁻¹)のもとで電解調製された試薬溶液(約 1.6%の ninhidrin が hydrindantin に変換される)を HPLC のポストカラム部に連続供給(Fig. 6)して 各種アミノ酸の分離・定量を行った。

Fig. 5 Flow-through electrolysis cell (Ref. 16). A, diaphragm; B, working electrode (glassy C.); C, inlet; D, outlet.

Fig. 6 Schematic representation of the system (Ref. 16). EC, electrolysis cell; NH, ninhidrin soln.; BU, buffers.

Steijgerら¹⁷はイソルミノール誘導体(N-(4-aminobutyl)-N-ethylisoluminol; ABEI)でラベ ル化した抗炎・解熱鎮痛薬を HPLC で分離し、ポストカラム部に導入した電解セルによって 発生させた H₂O₂ と反応させて化学発光定量を行った。システムの概略を Fig. 7 に示す; microperoxidase が触媒として検出器の手前で加えられている。Ibuprophen および naproxenを用いた実験では、それぞれ 0.15 及び 0.45 pmol の検出限界が得られた。電解 発生する H₂O₂ 濃度が化学発光強度から予測される量よりも少ないことから、電極反応で発 生した O₂⁻⁻ も反応に関与していると推測された。 Steijger 6 ¹⁸は ABEI ラベル化条件をさら に詳細に検討すると共に、経口投与後のヒト唾液中の ibuprophen を hexane-2-propanol (90:10, v/v)で抽出後、同様の原理に基づき測定した。これらの方法では H₂O₂ が準閉鎖系 での発生を必須とするほど不安定な試薬とは言えないが、オンライン電解調製法を導入する ことでより制御しやすいシンプルな装置構成が可能となった。ただし、感度については別流 路から H₂O₂ 溶液を送液する従来法に比べ必ずしも良いとは言えない結果であった。

Fig. 7 Block diagram of the LC-CL system with on-line electrochemical reagent generation (Refs. 17,18). E.C., electrochemical flow cell (-600 mV); mobile phase, acetonitrile-10 mM carbonate buffer of pH 10.5 (27:73, v/v); catalyst, 1 μ M microperoxidase in 10 mM carbonate buffer (pH 10.5).

4-2) 電解調製三価コバルトイオンを用いる酸化前処理法

三価コバルト (Co³⁺)アクアイオンは強力な酸化剤であり, Co³⁺ + e = Co²⁺の標準酸化還 元電位は +1.92V (25[°]C, vs. NHE)である。Co³⁺は水分子を容易に酸化するので, その水 溶液は非常に不安定である。この反応 4Co³⁺ + 2H₂O = 4Co²⁺ + 4H⁺ + O₂の機構は複雑 であり,速度論的研究から Co³⁺と OH⁻との間の電子移動による OH・ラジカルの生成が律速 であることが示唆されている。同イオンの分析化学的応用については, その不安定さのため 筆者の知る限り Fe(II), Ce(III)及び Fe(CN)6⁴⁻の光度滴定に用いた例 ¹⁹など古い文献に散 見されるだけであり,酸化力は低下するもののより安定な錯体(アセタト錯体, EDTAキレート) としてアスコルビン酸等を電位差滴定 ²⁰ や FIA(Co³⁺の吸光度を測定) ²¹により定量した例が 後に見られる。一方, Co³⁺ (主にアセタト錯体)を用いる有機化合物酸化反応については, こ れまでにいくつかの報告がなされている。その機構は有機化合物の構造にも依存しており+ 分に明らかにされているとは言えないようであるが, いずれにせよ Co³⁺への一電子移動によ って有機ラジカルが生成し, ここから連続反応が進行するものと考えられる。

筆者(Tanaka)が所属する研究室では、水試料中の総水銀の定量を目的に、 Co³⁺アクア イオンの酸化力を利用して有機水銀を Hg²⁺に変換する研究がすでに杉本ら²² によって行わ れていた。その結果、十分量の Co³⁺を試料に添加すれば、100 mg dm⁻³レベルの有機物が 共存していてもµg dm⁻³レベルの有機水銀の前処理及び測定(フローインジェクション(FI)-冷蒸気発生原子蛍光法(CVAFS))が可能であることが明らかにされた。しかし、 Co³⁺の電解 調製及びこれを用いる前処理ともバッチ法で行われていたので効率が悪く、しかも Co³⁺溶液 が不安定で保存には適さないため取り扱いが煩雑であった (硫酸強酸性(>5 mol dm⁻³)で低 温保存すれば幾分安定であるが, Co₂(SO₄)₃の溶解度が低いため沈殿が 析出する)。そこで Tanaka ら²³ は Co³⁺調製のためのフロー式電解装置 (Fig. 8)を製作し,これを FI-CVAFS の 流れ系の中に組み入れたオンライン試 薬発生・前処理・測定システムを開発し た(Fig. 9)。ここでは試料(0.6 cm³)中の 有機水銀は電解部から連続供給される Co³⁺によって Hg²⁺へと変換され, SnCl₂による還元気化,多孔質膜によ る気液分離,凝縮器による消光物質の 除去の過程を経て水銀の原子蛍光が

Fig. 8 Flow-through electrolysis device for Co³⁺ generation (Ref. 23).

測定される。本システムで1時間あたり20試料の測定が可能であり、検出限界(S/N=3)は0.2 μgdm⁻³であった。Tanakaら^{24,25}はまた、Co³⁺酸化分解法を有機リンの吸光光度定量の ための前処理に応用し、Co³⁺が常温で短時間(<10min)のうちに各種有機リン化合物を PO₄³⁻へと酸化分解でき、モリブデンブルー法によるリン定量にも全く干渉を示さないことを 明らかにした。

Fig. 9 Schematic diagram of FI-CVAFS system for total mercury determination (Ref. 23).

4-3) 電解調製二価クロムイオンを用いる還元前処理法

二価クロム(Cr^{2+})イオンは強力な還元剤であり、 $Cr^{3+} + e = Cr^{2+}$ の標準酸化還元電位は -0.424 V (25 °C, vs. NHE)である。 Cr^{2+} 溶液を空気と接触させると溶液の色は直ちに青 色から緑色へと変わり、 Cr^{2+} が極めて容易に空気酸化されることが理解できる。したがって $Cr^{2+}の分析化学的応用については先に述べた Schothorst らの研究 ³⁻⁵に加え、ニトロ基を有$ する農薬、²⁶ 顔料・塗料中の Ti,²⁷ 底質中の硫黄化合物、²⁸ 芳香族ニトロ化合物、²⁹ 農薬中の硫酸イオン ³⁰等、少数の例が見られるのみである。

微量木銀の原子スペクトル定量において, SnCl₂を用いる還元気化法は原子状木銀蒸気 を得るための方法として広く用いられている。しかし,この方法はヨウ化物イオン(I⁻)の存在下 で深刻な干渉を受ける。これは安定な錯体 HgI4²-の生成により,-SnCl₂の還元力(標準酸 化還元電位: +0.154 V)では水銀の還元気化が不可能になったためと説明されている。 Tanaka 6^{31,32}は Cr²⁺の強力な還元力を用いて HgI4²⁻から Hg を得ることを目的に, Cr²⁺を 流れ系の中で発生させ連続供給するための電解装置(陽極: Pt, 陰極: Zn)を製作し,これを FI-CVAFS システムに組み入れ検討した。その結果, Cr²⁺の強い還元力のもとでは試料中 に I⁻を高濃度(100 mg dm⁻³程度)に共存させた方がメモリー効果の低減や繰り返し精度の向 上, 検量線の直線性と検出限界の向上,干渉物質の共存許容濃度の上昇のためにむしろ 有効であることを明らかとした。これは I⁻の添加により Hg が HgI4²⁻の形で安定化され効率的 に還元気化部へと運ばれたためと推測された。さらに吉野ら³³はこのオンライン電解発生 Cr²⁺を用いる CVAFS システムを HPLC のポストカラム部に結合させ,各種有機水銀の分離・ 定量を行った。

4-4) オンライン電解水素化物発生法の原子スペクトル分析への応用

水素化物発生法は As, Bi, Ge, Pb, Sb, Se, Sn 及び Te の原子スペクトル定量に応用さ れている。このための試薬としては水素化ホウ素ナトリウム(NaBH4)が一般的であり,これを 用いるオンライン水素化物発生法については毎年多くの報告がなされている。しかし NaBH4 法は試薬からの汚染の可能性や試薬溶液の安定性の問題を有する上,コストも高くつく。そ こで Lin 6³⁴は FI-原子吸光分析装置に水素化物発生のためのオンライン電解過程を組み 入れた。電極表面における水素原子の発生とこれに引き続く水素化物生成の機構について は不明な点も多く,試薬調製法としての位置づけは微妙なところではあるが,新しい方法と思 われるので紹介する(なお,バッチ法での検討例はこれ以前にもある)。彼らの報告したシステ ム及びその薄層・フロー型電解セル(陽極・陰極各室の厚さがいずれも 0.2 mm; 陽極:Pt, 陰極:グラッシーカーボン)をFig. 10 および Fig. 11 に,最適化条件を Table 2 にそれぞれ示 す。ここでは 1 mol dm⁻³ H₂SO₄キャリヤー中に注入された 0.2 cm³試料中の目的元素は水素 化物に変換後,窒素ガスで検出器の加熱石英管に導かれ測定される。As, Sb 及び Se の検 出限界(3 σ)はそれぞれ 0.45, 0.62 及び 0.92 μ g dm⁻³ であり,漢方処方等の分析に応用さ れた。共存物質の許容濃度は陰極材質に依存するものの,彼らの期待に反して NaBH₄法と 同程度であった。

Fig. 10 Schematic diagram of the FI-electrochemical hydride generation system (Ref. 34).

Table. 2	Operating conditions for the FI-EC	2
-HGAAS s	ystem (Ref. 34).	

Parameter	As	Sb	Se	
Electrodeless discharge lamp				
power/W	8	8	8	
Wavelength/nm	193.8	217.6	196.0	
Atomizer temperature/°C	900	900	900	
Slit-width/nm	0.2	0.2	0.2	
Carrier-electrolyte solution	1 mol dm ⁻³ H ₂ SO ₄			
Carrier flow rate/ml min-1	4.0	4.0	4.0	
Sample volume/µl	200	250	200	
Nitrogen flow rate/ml min-	40	40	40	
Electrolysis current/A	1.0	1.0	1.0	

Fig. 11 Schematic diagram of the thinlayer electrolytic flow cell (Ref. 34).

Brockmann ら³⁵ は水素化物発生のための小型電解セルと多孔質膜を用いる気液分離器 を開発し, FI-原子吸光分析装置に導入した。これを用いて合金標準試料中のAs および Se をマイクロ波加熱分解後測定した。As(V)や Se(VI)では、あらかじめこれらをそれぞれ三価 および四価に還元しておく前処理を要した。本システムでは、(上記の Lin らのものとは本質 的な相違はあまりないと見受けられるが)1%もの Ni や Co が共存しても全く干渉を受けなかっ た。HueberとWinefoldner³⁶は、オンライン電解水素化物発生法をフレーム原子吸光法また は誘導結合プラズマ発光分析法と結合し As, Se 及び Sb を定量した。Ding と Sturgeon³⁷

。オきケ宝陬〉 ならこるで無処情示意う (Ⅲ)dS ふ(V)dS おれい用き除てしら体動剤。ふして取らる dS 全の 中木研・木川阿、し用ぶつお光処千点取後黒朝菇 bf 含芬生発酵小素木発電くトラント、お

なる下路共感重くトランセル人な取り中の糸水流を超過奥購薬菇 , コミルオシ近りはし

品誌.C

。オノ間省うの るれは思いでよるはへつしか焼一アン5論共大、れきなな音解の>を壊いですおアン関いか べトラントのお同、ないなようなきひならこるの合う物論の酸表読録本よフィルへご必要以前 報会視照縣代業る生き流気多代流谷の中保病とされて、 せき流生き酔いたい 三部各フィルゴ 14 無無代案、はな。るれは思らるあな判論での無発るなららの1 ご 発展の系 ふ 見な 肤 南 翁 や 、>な少0別かし査鵬な春輩お音輝かアビタ点黒ゴ用ぶのそう恐興購薬病べたそくたるやま ゴ市会小部なされのこ。るきア既実な用所の、薬病い高の哲研、電小鍋る下初図コ島容5本 の欺容おオま素類の中灵空おえ网、薬類い高の抄街的学小方へぬなきでならころい用来が 、01コリニるヤ媒睛で中の系パ流含薬焼アごなれ」。るまで仕十日パパを昇新け当間の分

。行まや土ノ申る意の機測に当史装飾の見委集翩めじおる主渋船諸裏所長員委兼翩結 Infa noitosini wolf し オノまの観弦会獣の童婢の筋綿本 、ゴ登場。オペ行を索鉤協文)

孤文

1. H. Ge, G. N. Oman and F.J. Ebert, J. Assoc. Off. Anal. Chem., 69, 560 (1986).

⁽⁹⁸⁶¹⁾ LLII 2. R.G. Lidzey and G.P. Savage, Beitr. Tabakforsch. Int., 13, 151 (1986); Anal. Abst., 48,

3. R.C. Schothorst, J.M. Rejin, H. Poppe and G.D. Boef, Anal. Chim. Acta, 145, 197 (1983).

4. R.C. Schothorst and G.D. Boef, Anal. Chim. Acta, 153, 133 (1983).

5. R.C. Schothorst and G.D. Boef, Anal. Chim. Acta, 175, 305 (1985).

6. R.C. Schothorst, J.J.F.V. Veen and G.D. Boef, Anal. Chim. Acta, 161, 27 (1984).

7. R.C. Schothorst, M.V. Son and G.D. Boef, Anal. Chim. Acta, 162, 1 (1984).

8. A.M. Romero, C.G. Benito and J.M. Calatayud, Anal. Chim. Acta, 308, 451 (1995).

9. H.A.G.Niederländer, W. van Assema, F.W. Engelaer, C. Gooijer and N.H. Velthorst,

10. H.A.G. Niederländer, M.J. Nuijens, E.M. Dozy, C. Gooijer and N.H. Velthorst, Anal. Anal. Chim. Acta, 255, 395 (1991).

11. W.P. King and P.T.Kissinger, Clin. Chem., 26, 1484 (1980); Chem. Abst., 93(21), 310 Chim. Acta, 297, 349 (1994).

(1980).

- 12. W. T. Kok, U.A.T. Brinkman and R.W. Frei, Anal. Chim. Acta., 162, 19 (1984).
- W.T. Kok, J.J. Halvax, W.H. Voogt, U.A.T. Brinkman and R.W. Frei, Anal. Chem. 57, 2580 (1985).
- W.T. Kok, W.H. Voogt, U.A.T. Brinkman and R.W. Frei, J. Chromatogr. 354, 249 (1986).
- 15. K. Isaksson, J. Lindquist and K. Lundström, J. Chromatogr. 324, 333 (1985).
- 16. T. Hori and S. Kihara, Fresenius Z. Anal. Chem., 330, 627 (1988).
- O.M. Steijger, G.J.D. Jong, J.J.M.Holthuis and U.A.T. Brinkman, J. Chromatogr., 557, 13 (1991).
- O.M. Steijger, H. Lingeman, U.A.T. Brinkman, J.J.M. Holthuis, A.K. Smide and D.A. Doornbos, J. Chromatogr., 615, 97 (1993).
- 19. C.E. Bricker and L.J. Loeffler, Anal. Chem., 27, 1419 (1955).
- 20. M. Hanif, J. Dolezal and J. Zyka, J. Chem. Soc. Pak., 1, 45 (1979).
- M.I. Albero, M.S. García, C. Sanchez-Pedreno and J. Rodrígues, *Analyst* [London], 117,1635 (1992).
- 22. 杉本祐之, 森田秀芳, 下村滋; 分析化学 (Bunseki Kagaku), 39, 251 (1990).
- 23. H. Tanaka, Y. Yamamoto, H. Morita and S. Shimomura, Anal. Sci., 8, 93, (1992).
- 24. H. Tanaka, T. Fukuoka and K. Okamoto, Anal. Sci., 10, 769 (1994).
- 25. H. Tanaka, T. Fukuoka and K. Okamoto, Anal. Sci., 11, 787 (1995).
- 26. B. Kratochvil and I.M. Al-Daher, Analyst [London], 106,796 (1981).
- 27. J.D. Norris, Analyst [London], 109, 1475 (1984).
- D.E. Canfield, R. Raiswell, J.T. Westrich, C.M. Reaves and R.A. Berner, *Chem. Geol.*, 54, 149 (1986).
- 29. I.M. Al-Daher and B. Kratochvil, Talanta, 33, 751 (1986).
- M.J. Hepher, R.H. Alexander and J. Dixon, J. Sci. Food Agric., 49, 379 (1989); Anal. Abst., 52, 147 (1990).
- H. Tanaka, M. Kouno, H. Morita, K. Okamoto and S. Shimomura, *Anal. Sci.*, 8, 857, (1992).
- 32. H. Tanaka, H. Morita, S. Shimomura and K. Okamoto, Anal. Sci., 9, 859 (1995).
- 33. 吉野正秀, 田中秀治, 岡本研作; 分析化学 (Bunseki Kagaku), 44, 691 (1995).
- 34. Y. Lin, X. Wang, D. Yuan, P. Yang, B. Huang and Z. Zhuang, J. Anal. At. Spectrom., 7, 287 (1992).
- 35. A. Brockmann, C. Nonn and A. Golloch, J. Anal. At. Spectrom., 8, 397 (1993).
- 36. D.M. Hueber and J.D. Winefordner, Anal. Chim. Acta, 316, 129 (1995).
- 37. W.W. Ding and R.E. Sturgeon, J. Anal. At. Spectrom., 11, 225 (1996).