
� �
This is the accepted version of the following article: A flexible FPGA implementation of GNSS signal acquisition circuit
using high level synthesis, 13th International Symposium on Computing and Networking Workshops (CANDARW 2025),
pp. 365–367 (11/2025), which has been published in final form at https://doi.org/10.1109/CANDARW68385.2025.00070.
The article was presented at 16th International Workshop on Advances in Networking and Computing (WANC-16), a
workshop of CANDAR 2025.
©2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works.� �
A flexible FPGA implementation of GNSS signal

acquisition circuit using high level synthesis

Naoki Fujieda and Rei Yokoyama Takuji Ebinuma
Department of Electrical and Electronics Engineering, Department of Astronautics and Aeronautics,

Faculty of Engineering, College of Science and Engineering,
Aichi Institute of Technology, Chubu University,

Toyota, Aichi, Japan Kasugai, Aichi, Japan
nfujieda@aitech.ac.jp (Naoki Fujieda) ebinuma@isc.chubu.ac.jp (Takuji Ebinuma)

Abstract—A GNSS (Global Navigation Satellite System) re-
ceiver is an attractive material to learn signal processing for
wireless systems. In digital design using an FPGA, high level
synthesis (HLS) has become common as a mean to implement
a complicated algorithm rapidly. This paper presents an HLS
implementation of the serial search method of GNSS signal
acquisition. The implemented code supports any combination of
parallelization for the three dimensions: PRN (Pseudo-Random
Number) codes, Doppler frequencies, and code offsets of PRN.
Learners will understand how to optimize code for HLS and how
parallelization policies affect the synthesized circuit and system
design. According to our evaluation with a PYNQ-Z1 evaluation
board, when the degree of parallelization was set to 528, the
proposed circuit completed the signal acquisition process for 32
satellites in 3.095 seconds, which was 507.6 times faster than the
circuit without being parallelized. The number of required LUTs
was 29,872, which was only 21.1 times larger.

I. INTRODUCTION

A GNSS (Global Navigation Satellite System) receiver is an
attractive learning material of signal processing for wireless
systems. It determines its own position based on radio waves
from earth satellites. Some countries operate their own GNSS
systems, such as GPS (Global Positioning System), Galileo,
and BeiDou. GNSS is a familiar subject for many learners as
they use it daily. Signals are available for free when we get
outside. Learning signal processing on GNSS can motivate
learners to proceed to more advanced topics, such as GNSS
spoofing attacks [7] and lunar navigation systems [9], or to
investigate other wireless systems.

One of an important process for a GNSS receiver is signal
acquisition. It checks if a signal from each satellite has been
received or not. If received, it also gives the Doppler frequency
and the spread code offset of that signal. Signal acquisition

methods are mainly classified into serial search and parallel
search [5]. In the serial search, the correlation power between
the input and a replica signal is calculated for each possible
pair of the frequency and the offset. The parallel search
determines their peak using fast Fourier transform (FFT). The
serial search has a simpler, more easily understandable code
organization, but requires much larger amount of computation.
To achieve both short execution time and simple organization,
a possible strategy is to apply some optimization and paral-
lelization to the serial search.

Meanwhile, there have been increasing demands for engi-
neers who understand FPGA (Field-Programmable Gate Ar-
ray) design and development for wireless systems, especially
using high level synthesis (HLS). Recent wireless systems
have many requirements: high-speed and low-latency process-
ing, flexibility to adapt them to new protocols and technolo-
gies, and reduction of time to market. Characteristics of FPGA
and HLS fit them well. Processing signals on wireless systems
at a processor or an FPGA is called software-defined radio
(SDR). Products for SDR that feature FPGA are available
for purchase, such as USRP and Red Pitaya. For an AMD’s
FPGA, a highly optimized HLS tool called Vitis HLS [10]
is available. By combining synthesized circuits with an FPGA
SoC platform called PYNQ, software drivers can be written in
Python, which enables a more efficient design and verification
flow in FPGA development.

Based on the aforementioned backgrounds, we present a
new FPGA implementation of a GNSS signal acquisition cir-
cuit. Its development principles are threefold. First, the serial
search is adopted as a signal acquisition method. Second, the
circuit is written in C++ synthesizable with Vitis HLS. Third,



3
fRF

Receiver
(MAX2769)

fIF

2

Carrier

NCO

Code

NCO

Carrier Gen.
Code

Gen.

fcarr fcode

I Q

3

×

×

×

×

4

4

4

4
Σ

Σ

16

16
^2

^2
+

32

C
o

rrelatio
n

 P
o

w
er

Correlator

Post-processing(1572.42 MHz) (16.368 MHz)

(4.092 MHz) (1.023 MHz)

Phase (3 MSBs of NCO)

I/
Q

 V
al

u
e

0 1 2 3 4 5 6 7

-2
-1

+1
+2

I
Q

Fig. 1. Overview of correlator in the signal acquisition algorithm.

the circuit can be verified in real machine of PYNQ. As far as
we know, there isn’t any implementation according to all of
these principles. Existing FPGA implementations of the serial
search [4], [6], [8] are written in HDL (Hardware Description
Language) and not suitable for grasping its process quickly.
GNSS-SDR [2] is a software implementation that targets a
processor but its code is very complicated in order to realize
real-time processing by software. Hard SyDR [3] has most
similar principles to ours, which adopts Vitis HLS and the
PYNQ platform. However, it implements the parallel search
and includes no viewpoints of learning. This paper describes
how the proposed circuit achieves both ease of understanding
code organization and moderate, customizable performance.
The relationship between the degree of parallelization and the
execution time or the amount of hardware is also evaluated
using the PYNQ-Z1 evaluation board.

II. GNSS SIGNAL ACQUISITION

In this research, an open-source C program of the serial
search for GPS signals [1] is used as a basis of our imple-
mentation. Figure 1 describes the overview of the correlator, a
main component of signal acquisition, in this program. A GPS
signal of frequency fRF is first down-converted by a front-end
receiver to intermediate frequency fIF . The program receives
a sequence of intermediate signals, quantized to 2 bits.

The correlator generates two kinds of replica signals: a
down-converted carrier and a C/A code, spread code of GPS.
The replicas are frequency controlled by corresponding NCOs
(Numerically Controlled Oscillators), or a kind of counter
circuits. The carrier replica has in-phase and quadrature com-
ponents, both of which are generated from three MSBs (Most
Significant Bits) of the carrier NCO and output as 3-bit signed
integers. The C/A code is a pseudo-random number (PRN)
sequence of 1,023 bits, predefined per satellite. The code
replica is output bit by bit (also called chip) and interpreted as
a sign bit. The code completes one cycle in one millisecond.

For each component, the product of the input, the carrier
replica, and the code replica are accumulated for one millisec-
ond. After that, the sum of the squares of them is calculated
and output as a relative correlation power. If it exceeds a
predefined threshold, the signal is considered acquired.

In the serial search method, the correlation power is cal-
culated and compared for each of the possible pairs of the

2

Sig

Parallel Correlator

Carrier

NCO
Code

NCO/Gen.

Mult. LUTsShift

Reg.

C×

F× PF×

Σ

Σ

Post-

Proc.

32
C

o
rrelatio

n
 P

o
w

er

PFC×

Fig. 2. Organization of the proposed parallel correlator.

Doppler frequency and the code offset. Due to Doppler shift
of a satellite, the frequency observed by the receiver is slightly
shifted. The base program [1] set its range as ± 6,000 Hz and
its step as 500 Hz. The code offset is searched through a whole
cycle of 1,023 chips, with a step of 0.5 chip. In this research,
we target all of the 32 satellites of GPS. Therefore, the number
of times of the correlation calculation in total becomes 25 ×
2,046 × 32 = 1,636,800. Converted to the number of multiply-
add operations, it amounts to about 53.6 billion.

III. OPTIMIZATION AND PARALLELIZATION

The development of the proposed circuit was roughly sepa-
rated into two phases. First, the base program was optimized
for HLS implementation, giving exactly the same results as
the base program. The optimization includes the use of types
of arbitrary bit width, replacement of C/A code generator
with a ROM, and replacement of multiplications of input and
repricas with table look-up. Then, the multiply-add operations
are parallelized for higher performance. The parallelization
is done for all three dimensions of the search space: the
PRN sequence, the Doppler frequency, and the code offset.
In this paper, the degrees of parallelization for the respective
dimensions are denoted as P , F , and C. For simplicity, we
set the degree for each dimension to a divisor of the number
of possible values for the variable. For example, the value of
C increases as 1, 2, 3, 6, 11, 22, 31, 33, and so on.

Figure 2 describes the organization of the parallelized cor-
relator. The input is delayed for 8 samples per 0.5 chip of the
code offset, using a shift register. The correlator has F copies
of the carrier NCO, as they have different increment values
with the frequencies. The code NCO and the code generator
are not fully duplicated. The value of P affects only the output
bit width of the ROM. The effect of Doppler frequency on
the code replica is up to one cycle of delay. It is enough for
them to be modified partially to output F code replicas of
P bits. Finally, C intermediate inputs, F carrier phases, and
FP code replicas are given to the parallelized multipliers, that
have been replaced with LUTs. The post-processing part is not
parallelized: the correlation power is calculated sequentially
from each pair of accumulators.

The main loop of the implemented C++ code has only 39
lines even including comments, blank lines, and pragmas. The
whole function to be high level synthesized is within 150
lines. The code is very clear even though various degrees of
parallelization can be applied.



10000

100000

1000000

10000000

100000000

0 200 400 600 800 1000

N
u

m
b

er
 o

f 
E

st
im

at
ed

 C
y
cl

es

Degree of parallelization (PFC)

w/o warnings

w/ warnings

104

105

106

107

108

Fig. 3. Estimated number of cycles to complete the target function.

0

10000

20000

30000

40000

50000

60000

0 200 400 600 800

N
u

m
b

er
 o

f 
L

U
T

s 
(#

L
U

T
)

Degree of Parallelization (PFC)

F=1

F=5

F=25

Fig. 4. Number of LUTs required for synthesized circuit.

IV. EVALUATION

We evaluate how the values of the degree of parallelization
P , F , and C affect the results of high level synthesis, the
execution time, and the amount of hardware. The syntheses
are conducted on a Windows 10 PC that has a Core i7-14700K
processor and 64 GB of main memory, using Vitis HLS 2022.1
and Vivado 2022.1. The target platform is PYNQ 3.0.1 on
a PYNQ-Z1 evaluation board. The measurement program of
the execution time is written in Python, which runs a task of
correlation calculation for all of the 1,636,800 sets.

First, we collected the estimated number of cycles to
complete the function of the correlator from the reports of
high level synthesis. Figure 3 plots the results. For the all
figures in this section, the X-axis represents the total degree
of parallelization, i.e., P ×F ×C. The Y-axis of this figure is
the estimated number of cycles, expressed in the logarithmic
scale. In the cases where the expected number of cycles (∼
16k) were not obtained, or triangles in the figure, an HLS 200–
960 warning was recorded that said the tool failed to flatten
the main loop. We found that we got a warning when FC
was set to a larger number than 62. We could guess that there
were some undocumented restrictions to 64 or more times of
loop iteration.

Second, we conducted logic syntheses to the circuits that
gave the expected number of cycles. Figure 4 depicts the
number of LUTs required for the circuits, obtained from the
reports of logic syntheses. The cases where F was set to 1,
5, and 25 were plotted as circles, diamonds, and triangles,
respectively. The figure clearly describes that it can be basi-

0

150

300

450

600

1

10

100

1000

10000

0 150 300 450 600

S
p

ee
d

u
p

E
la

p
se

d
 T

im
e 

[s
]

Degree of Parallelization (PFC)

Time

Speedup

CPU (23.6 s)

Fig. 5. Time elapsed for the signal acquisition task and speedup ratio.

cally approximated by a linear function. The same trend was
observed in the number of flip-flops. For all of the cases, 1.5
(× 36 kbit) block RAMs and 2 DSP units were used. The
Y-intercept of the approximate line was 1,867, which mainly
correspond to the interface and the post-processing circuits.
We also observed that the number of LUTs became slightly
large when the value of F was large, which was probably due
to the replication of the carrier NCOs.

Finally, we measured the time taken to complete the signal
acquisition task on real machine. Figure 5 depicts the time
(diamond) and its speedup ratio (circle). The execution time
is shown in the logarithmic scale of the left axis, while the
speedup ratio follows the right axis. The gray dotted line
represents the execution time of the CPU execution (23.6
seconds) using the same PC as the syntheses. The figure
indicates a linear performance improvement to the degree of
parallelization. When (P, F,C) = (16, 1, 33), the execution
time became 3.095 seconds, which corresponded to 507.6
times of speedup. On the other hand, the number of LUTs
became 29,872, only 21.1 times larger. Considering 53.6
billion multiply-add operations required for the process of
signal acquisition, the effective performance of the correlator
became 17.3 Gop/s, which was 16.4% of the peak performance
under the operating frequency of 100 MHz.

V. CONCLUSION

In this paper, we proposed an FPGA implementation of
GNSS signal acquisition circuit using high level synthesis. It
kept a simple code organization, balanced the performance
with the amount of hardware or other limitations, and had
the performance enough for practical use. The code and the
evaluation environment of the proposed circuit are available at
https://github.com/nfproc/gpsacq-hls.

We are planning to make necessary preparations to actually
use the proposed circuit for education. We will develop ref-
erence designs to support the signal tracking and to capture
actual GNSS signals. We would like to provide learners of
signal processing for wireless systems with these codes, and
feed the results back to future development.



REFERENCES

[1] CQ Publishing Co., Ltd. RF World No. 13 Download Service
(in Japanese). [Online]. Available: https://www.rf-world.jp/bn/RFW13/
RFW13DLS.shtml

[2] C. Fernández-Prades et al., “GNSS-SDR: an open source tool for
researchers and developers,” in 24th International Technical Meeting of
the Satellite Division of the Institute of Navigation, 2011, pp. 780–794.

[3] A. Grenier et al., “Hard SyDR: A Benchmarking Environment for Global
Navigation Satellite System Algorithms,” Sensors, vol. 24, no. 2, pp.
409:1–409:22, 2024.

[4] D. M. Harris. Hardware/Software Codesign for Wireless Systems.
Harvey Mudd Collage. [Online]. Available: https://pages.hmc.edu/
harris/class/e168b/

[5] R. Khan et al., “Acquisition Strategies of GNSS Receiver,” in Interna-
tional Conference on Computer Networks and Information Technology,
2011, pp. 119–124.

[6] P. J. Mumford et al., “The Namuru Open GNSS Research Receiver,”
in 19th International Technical Meeting of the Satellite Division of the
Institute of Navigation, 2006, pp. 2847–2855.

[7] D. Schmidt et al., “A Survey and Analysis of the GNSS Spoofing Threat
and Countermeasures,” ACM Computing Surveys, vol. 48, no. 4, pp.
64:1–64:31, 2016.

[8] A. M. Shapiro, “FPGA-based Real-time GPS Receiver,” Master’s thesis,
Cornell University, 2010.

[9] T. Tanaka et al., “Systems design results of LunaCube: Dual-satellite
lunar navigation system with 6U-CUBESATs,” Acta Astronautica, vol.
216, pp. 318–329, 2024.

[10] Xilinx Inc., Vitis High-Level Synthesis User Guide, UG1399 (v2021.1),
2021.


