
� �
This is the accepted version of the following article: A case for edge video processing with FPGA SoC: reversi board detec-
tion using Hough transform, 12th International Symposium on Computing and Networking Workshops (CANDARW 2024),
pp. 50–55 (11/2024), which has been published in final form at https://doi.org/10.1109/CANDARW64572.2024.00017.
The article was presented at 12th International Workshop on Computer Systems and Architectures (CSA-12), a workshop
of CANDAR 2024.
©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works.� �
A case for edge video processing with FPGA SoC:

reversi board detection using Hough transform

Naoki Fujieda† and Naoya Ito
Department of Electrical and Electronics Engineering, Faculty of Engineering,

Aichi Institute of Technology, Toyota, Aichi, Japan
†nfujieda@aitech.ac.jp

Abstract—There has been increasing needs for image and video
processing at edge devices, such as low-end FPGA System-on-
Chips (SoCs). In this paper, we present an accelerator of a reversi
board detection algorithm for a Zynq-7000 SoC, to investigate
advantages and limitations of edge video processing with FPGA
SoC. The accelerator is developed using the AMD Vitis vision li-
brary and its pipeline includes twelve OpenCV functions. Thanks
to high level synthesis, hardware generation itself is quite simple.
However, a part of the algorithm has to be modified, because
not all of the OpenCV functions are suitable for hardware
implementation and thus supported by the library. In our case,
contour detection was replaced with Hough transform. According
to our evaluation, the board detection became 16.1 times and 9.4
times faster than the software implementations of the original
and modified algorithms, respectively. The accelerator consumed
23%–54% of logic elements in the XC7Z020 device — 28,635
LUTs, 38,442 flip-flops, 50 DSP blocks, and 47 RAM blocks.

I. INTRODUCTION

Computer vision algorithms and their applications, such
as object detection [21] and anomaly detection [14], have
been surprisingly grown in recent 20 years. A major turning
point was marked by AlexNet [11], one of the most famous
deep neural networks (DNNs), while traditional algorithms
have still been widely applied. Implementing these algorithms
on edge devices is challenging, where power consumption
is strictly limited. The use of FPGA System-on-Chip (SoC)
is one of the attractive solutions, along with an embedded
GPU-based SoC, such as the Nvidia Jetson series [10]. With
its reconfigurability and parallelism, an FPGA SoC-based
solution has a potential for providing higher flexiblility and
energy efficiency than a GPU-based one. To this end, both
DNN-based [18] and traditional [5] algorithms have been
investigated for FPGA implementations. Typical applications

include object detection [13], pedestrian detection [19], and
stereo camera [20].

Libraries and frameworks can improve the productivity of
development of FPGA-based accelerators. For DNN inference,
open-source frameworks such as GUINNESS [12] and Brevi-
tas/FINN [17] support training of a quantized DNN model
and generation of a streaming architecture from the model.
Applications using these frameworks are, for example, an AI-
based robot car [7] and a face mask detector [6]. As image
processing libraries for AMD FPGAs, the Vitis vision library
[2] and HiFlipVX [9] are available. They provide C/C++
functions compatible with OpenCV and OpenVX, respectively,
which make it easy to offload a part of an image processing
program to an FPGA. The functions are optimized for the Vitis
HLS (High Level Synthesis) tool.

In this paper, we present an accelerator of a reversi board
detection algorithm, to investigate advantages and limitations
of edge video processing with a low-end FPGA SoC. The
algorithm is originally implemented in Python with OpenCV
[16]. The accelerator is developed using the Vitis vision library
and implemented on a Zynq-7000 SoC. Many existing accel-
erators [4], [5], [13] implement algorithms that include only a
few OpenCV functions. The proposed accelerator implements
more complicated algorithm composed of a series of twelve
OpenCV functions. We show a demonstrative system for the
accelerator using a Digilent PYNQ-Z1 FPGA SoC board,
an HDMI video camera, and an LCD display. The system
captures a frame from the camera, detects a board and stones,
overlays the detection results with the camera images, and then
shows them on the display. We also conduct a performance
comparison with software implementations on the PYNQ-Z1
board.



Original Image Green Region Convex Hull (Red)

Contours (Cyan)

1 2

bgr2hsv,

inRange
findContours, 

convexHull

Fig. 1. Overview of the original version of board detection algorithm.

II. BACKGROUND

A. Board Detection Algorithm

Figure 1 abstracts the reversi board detection algorithm. It is
a part of a board recognization program to locate the board and
stones and recognize the color of the stones. The source code
is written in Python with OpenCV and available at GitHub
[16]. In this paper, we deal with the board detection part only:
detection and recognization of stones are left unmodified and
executed as software.

The algorithm basically consists of two steps: (1) extraction
of green region and (2) finding the convex hull of the contours
of the green region. We assume the input image is full-color
in the RGB color space, with up to 1024 pixels on the longer
side.

In the first step, the input image is blurred and color
converted to the HSV color space. OpenCV defines the range
of H (hue) as 0–179, and the range of S (saturation) and V
(value) as 0–255. A pixel is considered green if 45 ≤ H ≤ 90
and at least one of the following conditions are met:

• S ≥ 89 and V ≥ 30, or
• S ≥ 64 and V ≥ 89.

These thresholds are shown in red frames in Fig. 1.
In the second step, the pair of findContours and

convexHull OpenCV functions are applied to the green
region, to obtain its contours. It is one of a common ways
to detect objects of arbitrary shape [8]. Four sides of the
board are then determined from the longest segments of lines.
The second step is actually executed twice, and in the first
execution, white region is determined and added to the green
region. This prevents the green region from being divided by
stones and improves the precision of detection.

B. Vitis Vision Library

AMD provides the Vitis vision library [2] as an open-source
hardware library optimized for their FPGAs. It was called
xfOpenCV before being incorporated into the Vitis library.
It has a similar API to OpenCV: many functions have the
same names as OpenCV in the xf::cv namespace. Input
and output images must be an instance of the xf::cv::Mat
class, which is similar to the cv::Mat class of OpenCV.
Inside a function, all pixels in the instance are written and read

OpenCV

Python

Vitis Vision

C++

blur = cv2.GaussianBlur(

img, (3, 3), 1.0, borderType=cv2.BORDER_CONSTANT)

xf::cv::GaussianBlur

<XF_FILTER_3X3, XF_BORDER_CONSTANT, XF_8UC3,

MAX_HEIGHT, MAX_WIDTH, XF_NPPC1>

(mat_img, mat_blur, 1.0f);

Arguments become

parameters

Maximum height and width Number of pixels processed per cycle

xf::cv::Mat instances

Fig. 2. Comparison of the Gaussian blur functions between OpenCV and
Vitis vision.

in order. A reference of instance in the argument is converted
into a simple stream interface upon high level synthesis.

Since the Vitis vision library functions are expected to be
synthesized to hardware modules, there are limitations and
differences from OpenCV. Major differences are as follows.

• Some arguments of OpenCV functions become template
parameters, which means they cannot be modified during
runtime.

• The maximum height and width of input images must be
given as template parameters.

• Some functions have an option to process eight pixels per
cycle, instead of one, for the highest performance. It is
also determined as a template parameter.

• Writes and reads to the xf::cv::Mat instance must
always be performed the same number of times. If an
image is used by multiple functions, it must be duplicated
by the duplicateMat function.

Figure 2 depicts an example of differnces between an
OpenCV function and the corresponding Vitis vision function.
Note that template parameters in C++ are enclosed in the angle
brackets, while arguments are enclosed in the parentheses. In
this case of the GaussianBlur function, the parameter σ
(standard deviation) can be changed during runtime but the
filter size and the type of image boundary processing cannot.

C. Hough Transform

Since not all of the OpenCV functions are suitable for hard-
ware implementation, some functions are not supported in the
Vitis vision library. In our case, the findContours function
used in the board detection algorithm is not supported. We
thus modified the algorithm to use the Hough line transform
instead, which will be shown in Section III. In this section, we
briefly explain the Hough line transform and the corresponding
HoughLines function of the Vitis vision library.

The Hough line transform detects lines from an edge-
detected binary image. The width and height of the input
image are denoted as W and H , respectively. For each pixel
at (x, y), where 0 ≤ x < W and 0 ≤ y < H , a set of lines
go through it are expressed in polar coordinate as

ρ = x cos θ + y sin θ. (1)

The pairs of (ρ, θ), corresponding to (x, y) in the x–y plane,
form a sine curve in the ρ–θ plane. When multiple sine curves
have an intersection in the ρ–θ plane, the correspoinding points
in the x–y plane will form a line.



Green Region Four Sides (Red)

Other Lines (Cyan)

32

Edge

dilate, erode HoughLines

Fig. 3. Overview of the modified version of board detection algorithm.

The actual algorithm consists of two parts: voting and
finding local maxima. In the voting part, each edge pixel is
transformed into a sine curve in the ρ–θ plane. For every
quantized point in the ρ–θ plane, the number of curves that
pass through it are counted. After that, local maxima of votes
that exceed a certain threshold are extracted as detected lines.
They are finally output as a list of pairs of ρ and θ.

The HoughLines function of the Vitis vision library has
two important differences from that of OpenCV. First, the
origin of polar coordinate is in the center of the input image,
instead of the upper-left corner. Considering this difference of
the origin, Eq. (1) can be translated into

ρ = (x−W/2) cos θ + (y −H/2) sin θ. (2)

The range of ρ and θ becomes −d/2 ≤ ρ < d/2 and
0 ≤ θ < π, where d =

√
W 2 +H2. Second, the detected

lines are written separately to the fixed-size arrays of ρ and
θ. The size of the arrays is determined by the LINESMAX
template parameter. If the number of detected lines is larger
than LINESMAX, the lines in excess are simply discarded.
If it is smaller than LINESMAX, the last pair of ρ and θ is
repeatedly written until the end of the arrays.

III. ALGORITHM MODIFICATION

Figure 3 describes the modified version of the reversi board
detection algorithm, in order to replace contour detection with
the Hough transform. Note that the step to extract green region,
Step 1, is identical to the original version shown in Fig. 1.
Since the Hough transform requires an edge-detected image,
the Laplacian filter is applied in Step 2 as a preprocessing.
The Hough transform then detects lines from the edge of the
green region in Step 3.

When many stones are placed on the board, edges of stones
may also form lines, as drawn by cyan lines in Fig. 3. We
design the following postprocessing steps to find the four sides
of the board from the detected lines:

1) clustering lines with similar θ into groups
2) making pairs of the groups that are nearly orthogonal to

each other
3) finding the pair that can make the largest rectangle, and
4) extracting two lines with the maximum and the mini-

mum ρ from each of the pair.

Array2xfMat

GaussianBlur

bgr2hsv

duplicateMat

inRange inRange

bitwise_or

dilate (7x7)

erode (7x7)

duplicateMat

dilate erode

bitwise_xor

dilate

HoughLines

Input Image

ρ Array θ Array

Step 1

Step 2

Step 3

Fig. 4. The dataflow of the reversi board detection accelerator.

In Fig. 3 for example, the red lines form one pair of line
groups and the cyan lines form another. The red lines are then
preferred in the third step.

IV. IMPLEMENTATION

Figure 4 depicts the dataflow of the developed accelerator.
The filter size is 3×3 unless otherwise described. It is assumed
that three physically contiguous arrays are allocated on the
main memory of the PS (processing system): input image, ρ
values, and θ values. The accelerator reads from and writes to
the PS memory when needed, using a separate AXI manager
interface for each array. The accelerator also has an AXI-Lite
subordinate interface to receive arguments from the PS, such
as physical addresses of the arrays and size of the input image.

White boxes correspond to OpenCV functions, while gray
boxes are extra functions required in the Vitis vision library.
Due to an issue of difference of data types, the Laplacian filter
in Step 2 is replaced with equivalent functions. As a result, the
pipeline of the accelerator includes twelve OpenCV functions.
In the Hough transform, the steps of ρ and θ are set to 3 pixels
and 3 degrees (or π/60 radians), respectively. The maximum
size of input image is 1024 × 1024 and the number of votes
required to being detected as a line is 500. The maximum
number of lines to detect (or LINESMAX) is set to 32.

V. DEMONSTRATIVE SYSTEM

A. System Design

To visualize how the developed accelerator works, a demon-
strative system that includes the accelerator is also developed.
Its top-level block diagram is shown in Fig. 5. The target
board is a Digilent PYNQ-Z1 board, which includes a Zynq-
7000 SoC (XC7Z020), and the system is based on the PYNQ
platform [1]. Some existing FPGA-based video processing
systems use a small CMOS camera such as OV9655 as an
input device [7], [15]. We prefer the HDMI interface because
the PYNQ-Z1 board has two HDMI receptacles and the related
IP cores are available as a part of the PYNQ platform.



Zynq PS

HDMI In/Out

Video

Overlay

Accelerator

Fig. 5. The block diagram of demonstrative system for the reversi board
detection accelerator.

Fig. 6. A photograph where the demonstrative system is working.

Blocks with the blue frame and the red frame are the Zynq
PS and the developed accelerator, respectively. Two green
frames correspond to video subsystems: an HDMI input/output
subsystem and a video overlay subsystem.

The HDMI subsystem is extracted from the base design
of the PYNQ platform, while some unnecessary blocks are
omitted from the video pipeline. The input pipeline is usually
tied to the output pipeline, which means basically the same
image as the input is output after a slight delay. Frame buffers
are allocated on the PS main memory. This enables a user to
receive the most recently captured frame.

The video overlay subsystem is composed of an overlay
controller, a block memory, and an AXI interface for the
block memory. The controller is inserted into the HDMI output
pipeline in order to overlay a user-drawn image on the origial
output image. The block memory works as the frame buffer
for overlay, which is written from the PS via the AXI interface
and read from the controller. This design makes the processing
of HDMI signals asynchronous to the other processing such
as detection and recognization. In other words, even during a
long processing, the input video does not look to be stuck on
the output device. The resolution of the overlay is 480 × 270
pixels and each pixel has 8 bits, one of which is to determine
if the corresponding pixel is transparent.

Picture ID = 1 Picture ID = 100Picture ID = 51

Fig. 7. Examples of pictures used in the performance evaluation.

B. Working Example

Figure 6 depicts a working example of the demonstrative
system. The system uses an HDMI video camera and an
LCD display as HDMI input and output devices, respectively.
Full HD (1920 × 1080 pixels) images are captured from the
camera. The central area of 1024 pixels square, shown in a
blue box, is cropped and used for the further processing. The
board detection using the accelerator is conducted at first and,
if succeeded, detection and recognition of stones are performed
by software. Their results are graphically shown by writing an
image to the overlay frame buffer. When processing for one
frame is completed, processing for another frame starts, which
is the most recently captured at that point.

With this system, we demonstrated that moderately compli-
cated video processing became almost real-time. As we will
evaluate quantitatively in Section VI.B, it only takes tens of
milliseconds to complete the board detection. While the system
fails to detect a board, lines detected by the Hough transform
quickly follow the input video. Once a board is successfully
detected, it takes longer time (about a second) to recognize
the stones on the board.

VI. EVALUATION

A. Methodology

In this section, we evaluate the developed accelerator in
two aspects: the performance of board detection and the
amount of required hardware. In the performance evaluation,
we measure the time to complete the whole process of board
detection and stone recognization, as done in the original
software [16]. We also counts the number of boards detected
and stones correctly recognized. They are compared with the
original and the modified versions of software implementation.
In the evaluation of the amount of hardware, we count the
numbers of look-up tables (LUTs), flip-flops (FFs), digital
system processing (DSP) blocks, and RAM blocks required.
It is important to assess the possibility of further extension,
because the number of logic elements available in a Zynq-7000
SoC is not so large.

For comparison, we prepared another version of the accel-
erator and the system where only the HoughLines function
is hardware implemented. We call this version Hough-only, to
distinguish from the full version as shown in Fig. 4. In this
case, the green region extraction and the edge detection, or
Step 1 and Step 2 in Fig. 4, are processed in software.

As a dataset, we prepared 100 pictures of reversi boards
taken by a digital camera. The number of stones on the board is
gradually increased as the picture ID increases. Figure 7 gives



528.6 
311.1 224.2 32.9 

1530.2

1332.3
1247.9

1053.3

0

200

400

600

800

1000

1200

1400

1600

1800

Original Modified Hough-only Full

P
ro

ce
ss

in
g

 T
im

e 
[m

s]

Imprementation

Image Reading Board Detection Stone Recognition Image Writing

Fig. 8. Comparison of the average time for processing.

some examples. The resolution of all of the pictures is 1024
× 683 pixels. The board detection is considered success if a
sufficiently large rectangle (> 200 × 200 pixels) is found in
the input image. For each board detected, the stone recognition
algorithm guesses the color of the stone in each cell as either
white, black, blank, or unknown. A blank stone means that
a stone is not detected in that cell, while an unknown stone
indicates that a stone is detected but the algorithm fails to
recognize its color. The accuracy of the stone recognition
is determined by comparing the guessed color with the pre-
determined correct answer (in white, black, or blank). The
results of the stone recognition are also saved as small images.
Note that the case where the board detection gives a wrong
region will surface as a drop of the stone recognition accuracy,
instead of the board detection accuracy.

The latency is measured separately in four parts: (1) image
reading, (2) board detection, (3) stone recognition, and (4)
image writing. When the board is not detected, the latter two
parts are skipped and omitted from the calculation of average
time.

The accelerator is high level synthesized using the Vitis
vision library 2021.1 and Vitis HLS 2021.1. The demonstrative
system is synthesized and implemented with Vivado 2020.2,
which is the version recommended for PYNQ 2.7. However,
due to a memory management issue of the Python library,
PYNQ was downgraded to 2.6. This version of PYNQ includes
Python 3.6.5 and OpenCV 3.4.3.

B. Latency and Accuracy

Figure 8 compares the average time taken to process one
image by each implementation. The board detection became
16.1 times faster and the time taken by the whole process
became 31% shorter. In the original software implementation,
the board detection had 35% of the time of the whole process.
The percentage now reduced to 3.1% in the full version of
hardware implementation. By comparing with the modified
version, it can be seen that the modification of algorithm itself
also contributed to the speedup. The modified version took
41% shorter time than the original. The hardware implemen-
tation was even 9.5 times faster.

TABLE I
COMPARISON OF THE NUMBER OF BOARDS DETECTED AND STONES

CORRECTLY RECOGNIZED.

Implementation # boards % stones
Original 100 99.98 (6,399 / 6,400)
Modified 100 99.80 (6,387 / 6,400)

Hough-only 64 97.07 (3,976 / 4,096)
Full 98 98.04 (6,149 / 6,272)

TABLE II
THE NUMBER OF LOGIC ELEMENTS IN USE.

Impl. / Module LUT FF DSP RAM
w/o Accelerator 10,354 15,508 0 41.5
Hough-only 33,375 48,293 11 73.0
Full 41,831 58,268 50 88.5

(79%) (55%) (23%) (63%)
- accelerator 28,635 38,442 50 47.0

(54%) (36%) (23%) (34%)
- Array2xfMat 1,048 998 4 0.0
- GaussianBlur 3,231 3,538 33 3.0
- bgr2hsv 363 438 6 1.0
- duplicateMat (1) 49 68 0 0.0
- inRange (1) 81 143 0 0.0
- inRange (2) 73 125 0 0.0
- bitwise or 57 71 0 0.0
- dilate (7x7) 946 1,585 0 3.5
- erode (7x7) 1,024 1,729 0 3.5
- duplicateMat (2) 51 68 0 0.0
- dilate (1) 307 382 0 1.5
- erode 290 334 0 1.5
- bitwise xor 50 78 0 0.0
- dilate (2) 276 358 0 1.5
- HoughLines 17,388 24,336 7 30.0

Table I compares the number of boards detected (# boards)
and the percentage of stones correctly recognized (% stones)
for each implementation. It was confirmed that the effect of
the modification of algorithm on accuracy was only 0.2%,
by detecting slightly larger or smaller region than the actual
board. However, we encountered a serious drop of accuracy
with hardware implementations. It was more apparent when
only the Hough transform was implemented in hardware,
where more than a third of the boards were not or wrongly
detected. We noticed that some of the lines were omitted
randomly, even though we gave exactly the same input image.
We think the most likely possibility is that there is a bug
in the library, regarding uninitialized variables. According to
the revision history of the file that implements the Hough
transform [3], it looks that a modification to fix the very bug
has been made in version 2024.1, the latest version at the
time of writing this paper. It is left as future work to adopt
the latest version of environment or backport that modification
to the version currently using.

C. Amount of Hardware

Table II summarizes the numbers of LUTs, FFs, DSP
blocks, and RAM blocks required by the developed systems.
For the full version of the accelerator, a per-function break-
down is also shown in the table. For comparison, the case
without any accelerator (w/o Accelerator) is also measured.
The number of RAM blocks is counted as 1 for a 36-kib RAM



and 0.5 for a 18-kib RAM. The accelerator used 54% of LUTs,
36% of FFs, 23% of DSPs, and 34% of RAMs compared to
the number of elements available in the XC7Z020 device. As
for the whole system, 79% of LUTs were in use. We will have
to consider downsizing of some of the modules for a further
extension.

When looking at the breakdown carefully, the following
observations can be made.

• Selection of the step of θ in the Hough transform heavily
affects the numbers of LUTs, FFs, and RAM blocks.
To process one pixel in every cycle, the voting process
must be done in parallel for each possible value of θ. In
our case, as the step was set to 3 degree, we needed 60
parallel voting. For each voting process, a 18-kib RAM
block is used to store the number of votes. A few hundred
LUTs and FFs are also used to increment the votes by
one and the ρ value by cos θ.

• The number of DSP blocks for the Hough transform is
considered to be a constant. DSPs are used for initiliza-
tion of the ρ value and conversion of results to floating-
point numbers. From Eq. (2), the ρ value at the upper-left
corner pixel becomes

ρ = −(W/2) cos θ − (H/2) sin θ. (3)

It is also required for each possible value of θ. However,
this calculation is only required during initialization and
it don’t have to be done in parallel. Conversion of results
can also be done sequentially.

• Gaussian blur might be optimized by replacing with a
custom filter, or Filter2D. It was the second largest
module in the developed accelerator. As we have de-
scribed in Fig. 2, the parameter σ is still an argument.
Even though σ is a constant, it looked that the filter
coefficients were always calculated, or not removed by
constant propagation.

• Filters that requires neighboring pixel values use a small
number of RAM blocks as line buffers. When an accelera-
tor includes a large number of such filters, RAM capacity
might become a problem.

• The number of logic elements for simple operation, such
as duplication, comparison, and bitwise logic operation,
is negligible.

VII. CONCLUSION

In this paper, we presented an edge video processing
accelerator and its applied system, taking a reversi board
detection as a theme. Through the development and evaluation
of them, we found the following pros and cons of low-
end FPGA SoC-based edge video processing: (P1) generation
of accelerator from a series of OpenCV functions became
quite simple using the Vitis video library, (P2) moderately
complicated video processing became almost real-time; (C1)
developers might have to modify their algorithm to be suitable
for hardware implementation, and (C2) a limited number of
logic elements, especially LUTs, might limit the expandability
of the accelerator.

An immediate future work is to apply hardware implemen-
tation to the parts that have not been accelerated in this paper
— stone recognition. However, we will have to optimize some
of the resource-eating functions such as HoughLines and
GaussianBlur before doing so. For the long-term, we are
planning to use the findings of this research to accelerate image
and video processing in various fields. We will then compare
these results with embedded GPU-based solutions.

ACKNOWLEDGMENT

A part of this study was supported by the Nitto Foundation.
The first author personally thanks Mr. Daikan Harada and Mr.
Kotaro Hikosaka for their conrtibution in initial evaluations.

REFERENCES

[1] Advanced Micro Devices. PYNQ — Python Productivity to AMD
Adaptive Compute platforms. [Online]. Available: https://www.pynq.io/

[2] ——. Vitis Vision Library. [Online]. Available: https://github.com/
Xilinx/Vitis Libraries/tree/main/vision

[3] ——. xf houghlines.hpp (Vitis Vision Library). [Online].
Available: https://github.com/Xilinx/Vitis Libraries/blob/main/vision/
L1/include/imgproc/xf houghlines.hpp

[4] P. Babu and E. Parthasarathy, “Hardware Acceleration of Image and
Video Processing on Xilinx Zynq Platform,” Intelligent Automation and
Soft Computing, vol. 30, no. 3, pp. 1063–1071, 2021.

[5] A. Cortés, I. Vélez, and A. Irizar, “High level synthesis using Vivado
HLS for Zynq SoC: Image processing case studies,” in 31st Conference
on Design of Circuits and Integrated Systems, 2016, pp. 1–6.

[6] N. Fasfous et al., “BinaryCoP: Binary Neural Network-based COVID-19
Face-Mask Wear and Positioning Predictor on Edge Devices,” in 35th In-
ternational Parallel and Distributed Processing Symposium Workshops,
2021, pp. 108–115.

[7] F. Hamanaka, T. Kanamori, and K. Kise, “A low cost and portable
mini motor car system with a BNN accelerator on FPGA,” in 14th
International Symposium on Embedded Multicore/Many-core Systems-
on-Chip, 2021, pp. 84–89.

[8] A. Huamán. Convex Hull, OpenCV Tutorials. [Online]. Available:
https://docs.opencv.org/4.4.0/d7/d1d/tutorial hull.html

[9] L. Kalms, A. Podlubne, and D. Göhringer, “HiFlipVX: an Open Source
High-Level Synthesis FPGA Library for Image Processing,” in 15th
International Symposium on Applied Reconfigurable Computing, 2019,
pp. 149–164.

[10] L. S. Karumbunathan. Solving Entry-Level Edge AI
Challenges with NVIDIA Jetson Orin Nano. NVIDIA
Corporation. [Online]. Available: https://developer.nvidia.com/blog/
solving-entry-level-edge-ai-challenges-with-nvidia-jetson-orin-nano/

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classifica-
tion with Deep Convolutional Neural Networks,” in 25th International
Conference on Neural Information Processing Systems, 2012, pp. 1097–
1105.

[12] H. Nakahara et al., “GUINNESS: A GUI based binarized deep neural
network framework for software programmers,” IEICE Transcations on
Information and Systems, vol. E102.D, no. 5, pp. 1003–1011, 2019.

[13] M. P. R. Prasad and A. K. Singh, “FPGA based object parameter
detection for Embedded Vision Application,” International Journal of
Computing and Digital Systems, vol. 14, no. 1, pp. 1091–1099, 2023.

[14] L. Ruff et al., “A Unifying Review of Deep and Shallow Anomaly
Detection,” Proceedings of the IEEE, vol. 109, no. 5, pp. 756–795, 2021.

[15] S. Sarkar, S. S. Bhairannawar, and K. B. Raja, “FPGACam: A FPGA
based efficient camera interfacing architecture for real time video
processing,” IET Circuits, Devices and Systems, vol. 15, no. 8, pp. 814–
829, 2021.

[16] A. Tanaka. reversi recognition. [Online]. Available: https://github.com/
lavox/reversi recognition

[17] Y. Umuroglu et al., “FINN: A framework for fast, scalable binarized
neural network inference,” in 25th International Symposium on Field-
Programmable Gate Arrays, 2017, pp. 65–74.

[18] M. P. Véstias, “A Survey of Convolutional Neural Networks on Edge
with Reconfigurable Computing,” Algorithms, vol. 12, no. 8, pp. 154:1–
154:24, 2019.



[19] M. Wasala and T. Kryjak, “Real-time HOG+SVM based object detection
using SoC FPGA for a UHD video stream,” in 11th Mediterranean
Conference on Embedded Computing, 2022, pp. 1–6.

[20] C. Wu and K. Weng, “The Development and Implementation of a
Real-Time Depth Image Capturing System Using SoC FPGA,” in 30th
International Conference on Advanced Information Networking and
Applications Workshops, 2016, pp. 934–938.

[21] Z. Zou et al., “Object Detection in 20 Years: A Survey,” Proceedings
of the IEEE, vol. 111, no. 3, pp. 257–276, 2023.


