80.“Hydrothermal Formation of Luminescent Nanoparticles Based on Zirconia
and Europium Niobate,”
M. Hirano and H. Dozono,
J. Ceram. Soc. Japan, 121, [1] 113-115 (2013) |
79.“Hydrothermal Synthesis of Nb- and Eu- Co-Substituted Nanocrystalline
Anatase: EuXTi1-2NbXO2 with Photoluminescence and Photocatalytic Activity: Compositional Dependence
of Multifunctional Properties,”
M. Hirano and S. Sato,
J. Am. Ceram. Soc., 95, [11] 3408-3414 (2012) |
78.“Effect of Treatment on the Hydrothermal Formation, Phase, and Photoluminescence
Property of Nb- and Eu- Co-Substituted Anatase-Type Titania Nanocrystals,”
M. Hirano and S. Sato,
Mater. Lett., 83, 186-188 (2012) |
77.“Hydrothermal Synthesis of Rutile-Type Complete Solid Solution Nanoparticles
in the TiO2-SnO2 System
under Acidic Conditions,”
M. Hirano and T. Kono,
J. Am. Ceram. Soc., 94 [10] 3319-3226 (2011) |
76.“Hydrothermal Synthesis and Properties of Solid Solutions and Composite
Nanoparticles in the TiO2-SnO2 System,”
M. Hirano H. Dozono, and T. Kono,
Mater. Res. Bull., 46, 1384-1390 (2011). |
75.“Hydrothermal Synthesis of Yttrium and Niobium Co-Doped Anatase-Type
Titania Nanoparticles,
M. Hirano and S. Sato,
J. Ceram. Soc. Japan., 119 [6] 464-469 (2011) |
74.“Effect of Co-Dopant on the Formation and Properties of Anatase-Type
Titania Solid Solutions Doped
with Niobium,”
M. Hirano and T. Ito,
J. Phys. Chem. Solids, 72 [6] 661-666 (2011) |
73.“Titania Solid Solution Nanoparticles Co-Doped with Niobium and Gallium,”
M. Hirano and T. Ito,
J. Ceram. Soc. Japan., 118, 1170-1175 (2010) |
72.“Phase Transformation and Precipitation Behavior of Niobium Component
out of Niobium-Doped
Anatase-Type TiO2 Nanoparticles Synthesized via Hydrothermal Crystallization,”
M. Hirano and Y. Ichihashi,
J. Mater. Sci., 44, 6135-6143 (2009) |
71.“Hydrothermal Synthesis of Anatase-type Solid Solution/Silica Composite
Nanoparticles,”
M. Hirano and M. Kozawa,
J. Aust. Ceram. Soc., 45,13 -18 (2009) |
70.“Synthesis of Anatase Nanoparticles with Extremely Wide Solid Solution
Range and ScTiNbO6
with a-PbO2 Structure,”
M. Hirano and T. Ito,
J. Solid State Chem., 182, 1581-1586 (2009) |
69.“New Compound ScTiNbO6 Synthesized via Phase Transformation from Anatase
to Srilankite-Like Structure,”
M. Hirano and T. Ito,
Mater. Lett., 63, 1508-4510 (2009) |
68.“Direct Formation of New, Phase-Stable, and Photoactive Anatase-Type
Ti1-2XNbXScXO2 Solid
Solution Nanoparticles by Hydrothermal Method,”
M. Hirano and T. Ito,
Mater. Res. Bull., 43, 2196-2206 (2008). |
|
67.“New Anatase-Type Ti1-2XNbXAlXO2 Solid Solution Nanoparticles: Direct Formation, Phase
Stability, and Photocatalytic Performance,”
M. Hirano and T. Ito,
J. Nanosci. Nanotechnol., 6, 3820-3827 (2006) |
66.“Effect of Niobium on the Structure and Photoactivity of Anatase(TiO2) Nanoparticles,”
M. Hirano and K. Matsushima,
J. Nanosci. Nanotechnol., 6, 762-770 (2006) |
65.“Photoactive and Adsorptive Niobium-Doped Anatase (TiO2) Nanoparticles : Influence of
Hydrothermal Conditions on Their Morphology, Structure, and Properties,”
M. Hirano and K Matsushima,
J. Am. Ceram. Soc., 89 [1] 110-117 (2006) |
64.“Anatase-Type TiO2 and ZrO2-Doped TiO2 Directly Formed from Titanium(III) Sulfate Solution
by Thermal Hydrolysis: Effect of the Presence of Ammonium Peroxodisulfate
on their Formation
and Properties,”
M. Hirano, K. Ota, and T. Ito,
J. Am. Ceram. Soc., 88 [12] 3303-3310 (2005) |
63.“Scandium-Doped Anatase (TiO2) Nanoparticles Directly Formed by Hydrothermal Crystallization,”
M. Hirano and K. Date,
J. Am. Ceram. Soc., 88 [9] 2604-2607 (2005) |
62.“Direct Formation of Anatase (TiO2) / Silica (SiO2) Composite Nanoparticles with High Phase
Stability of 1300℃ from Acidic Solution by Hydrolysis under Hydrothermal
Condition,”
M. Hirano, K. Ota, and H. Iwata,
Chem. Mater., 16 [19] 3725-3732 (2004) |
61.“Effect of Crystallinity of Anatase on Photoactivity for Methyleneblue
Decomposition in Water,”
M. Toyoda, Y. Nanbu, Y. Nakazawa, M. Hirano, and M. Inagaki,
Appl. Catal. B: Environ., 49, 227-232 (2004). |
|